
Automated Driving Toolbox™
User’s Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ User’s Guide
© COPYRIGHT 2017–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2017 Online only New for Version 1.0 (Release 2017a)
September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.3 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 3.0 (Release 2019b)
March 2020 Online only Revised for Version 3.1 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Sensor Configuration and Coordinate System Transformations
1

Coordinate Systems in Automated Driving Toolbox 1-2
World Coordinate System . 1-2
Vehicle Coordinate System . 1-2
Sensor Coordinate System . 1-4
Spatial Coordinate System . 1-7
Pattern Coordinate System . 1-7

Calibrate a Monocular Camera . 1-9
Estimate Intrinsic Parameters . 1-9
Place Checkerboard for Extrinsic Parameter Estimation 1-9
Estimate Extrinsic Parameters . 1-12
Configure Camera Using Intrinsic and Extrinsic Parameters 1-13

Ground Truth Labeling and Verification
2

Get Started with the Ground Truth Labeler . 2-2

Load Ground Truth Signals to Label . 2-4
Load Timestamps . 2-4
Open Ground Truth Labeler App . 2-4
Load Signals from Data Sources . 2-4
Configure Signal Display . 2-7

Label Ground Truth for Multiple Signals . 2-9
Create Label Definitions . 2-9
Label Video Using Automation . 2-13
Label Point Cloud Sequence Using Automation . 2-15
Label with Sublabels and Attributes Manually . 2-18
Label Scene Manually . 2-20
View Label Summary . 2-20
Save App Session . 2-20

Export Ground Truth Labels for Multiple Signals 2-21

Sources vs. Signals in Ground Truth Labeling . 2-28

Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler 2-30
Label Definitions . 2-30
Frame Navigation and Time Interval Settings . 2-30
Labeling Window . 2-30

iii

Contents

Cuboid Drawing . 2-31
Polyline Drawing . 2-32
Polygon Drawing . 2-32
Zooming . 2-32
App Sessions . 2-33

Control Playback of Signal Frames for Labeling 2-34
Signal Frames . 2-34
Master Signal . 2-34
Change Master Signal . 2-35
Display All Timestamps . 2-36
Specify Timestamps . 2-37
Frame Display and Automation . 2-37

Label Lidar Point Clouds for Object Detection . 2-38
Set Up Lidar Point Cloud Labeling . 2-38
Zoom, Pan, and Rotate Frame . 2-39
Hide Ground . 2-39
Label Cuboid . 2-40
Modify Cuboid Label . 2-42
Apply Cuboids to Multiple Frames . 2-43
Configure Display . 2-43

Create Class for Loading Custom Ground Truth Data Sources 2-45
Custom Class Folder . 2-45
Class Definition . 2-45
Class Properties . 2-45
Method to Customize Load Panel . 2-46
Methods to Get Load Panel Data and Load Data Source 2-48
Method to Read Frames . 2-50
Use Predefined Data Source Classes . 2-50

Tracking and Sensor Fusion
3

Visualize Sensor Data and Tracks in Bird's-Eye Scope 3-2
Open Model and Scope . 3-2
Find Signals . 3-2
Run Simulation . 3-6
Organize Signal Groups (Optional) . 3-8
Update Model and Rerun Simulation . 3-8
Save and Close Model . 3-8

Linear Kalman Filters . 3-11
State Equations . 3-11
Measurement Models . 3-12
Linear Kalman Filter Equations . 3-13
Filter Loop . 3-13
Constant Velocity Model . 3-14
Constant Acceleration Model . 3-15

iv Contents

Extended Kalman Filters . 3-16
State Update Model . 3-16
Measurement Model . 3-16
Extended Kalman Filter Loop . 3-17
Predefined Extended Kalman Filter Functions . 3-18

Planning, Mapping, and Control
4

Display Data on OpenStreetMap Basemap . 4-2

Access HERE HD Live Map Data . 4-7
Step 1: Enter Credentials . 4-7
Step 2: Create Reader Configuration . 4-7
Step 3: Create Reader . 4-8
Step 4: Read and Visualize Data . 4-9

Enter HERE HD Live Map Credentials . 4-12

Create Configuration for HERE HD Live Map Reader 4-14
Create Configuration for Specific Catalog . 4-14
Create Configuration for Specific Version . 4-16
Configure Reader . 4-17

Create HERE HD Live Map Reader . 4-18
Create Reader from Specified Driving Route . 4-18
Create Reader from Specified Map Tile IDs . 4-20

Read and Visualize Data Using HERE HD Live Map Reader 4-22
Create Reader . 4-22
Read Map Layer Data . 4-23
Visualize Map Layer Data . 4-27

HERE HD Live Map Layers . 4-30
Road Centerline Model . 4-31
HD Lane Model . 4-33
HD Localization Model . 4-34

Rotations, Orientations, and Quaternions for Automated Driving 4-35
Quaternion Format . 4-35
Quaternion Creation . 4-35
Quaternion Math . 4-37
Extract Quaternions from Transformation Matrix 4-39

Control Vehicle Velocity . 4-42

Velocity Profile of Straight Path . 4-44

Velocity Profile of Path with Curve and Direction Change 4-48

v

Cuboid Driving Scenario Simulation
5

Build a Driving Scenario and Generate Synthetic Detections 5-2
Create a New Driving Scenario . 5-2
Add a Road . 5-2
Add Lanes . 5-4
Add Vehicles . 5-5
Add a Pedestrian . 5-7
Add Sensors . 5-8
Generate Synthetic Detections . 5-11
Save Scenario . 5-12

Prebuilt Driving Scenarios in Driving Scenario Designer 5-14
Choose a Prebuilt Scenario . 5-14
Modify Scenario . 5-33
Generate Synthetic Detections . 5-33
Save Scenario . 5-34

Euro NCAP Driving Scenarios in Driving Scenario Designer 5-36
Choose a Euro NCAP Scenario . 5-36
Modify Scenario . 5-52
Generate Synthetic Detections . 5-52
Save Scenario . 5-53

Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer
. 5-55

Choose 3D Simulation Scenario . 5-55
Modify Scenario . 5-59
Save Scenario . 5-60
Recreate Scenario in Simulink for 3D Environment 5-60

Import OpenDRIVE Roads into Driving Scenario 5-62
Import OpenDRIVE File . 5-62
Inspect Roads . 5-63
Add Actors and Sensors to Scenario . 5-67
Generate Synthetic Detections . 5-69
Save Scenario . 5-70

Import HERE HD Live Map Roads into Driving Scenario 5-72
Set Up HERE HDLM Credentials . 5-72
Specify Geographic Coordinates . 5-72
Select Region Containing Roads . 5-74
Select Roads to Import . 5-75
Import Roads . 5-76
Compare Imported Roads Against Map Data . 5-78
Save Scenario . 5-78

Create Driving Scenario Variations Programmatically 5-80

Generate Sensor Detection Blocks Using Driving Scenario Designer . . 5-85

Test Open-Loop ADAS Algorithm Using Driving Scenario 5-94

vi Contents

Test Closed-Loop ADAS Algorithm Using Driving Scenario 5-100

3D Simulation – User's Guide
6

3D Simulation for Automated Driving . 6-2
3D Simulation Blocks . 6-2
Algorithm Testing and Visualization . 6-4

3D Simulation Environment Requirements and Limitations 6-6
Software Requirements . 6-6
Minimum Hardware Requirements . 6-6
Limitations . 6-6

How 3D Simulation for Automated Driving Works 6-8
Communication with 3D Simulation Environment 6-8
Block Execution Order . 6-8

Coordinate Systems for 3D Simulation in Automated Driving Toolbox . 6-10
World Coordinate System . 6-10
Vehicle Coordinate System . 6-12

Choose a Sensor for 3D Simulation . 6-16

Simulate a Simple Driving Scenario and Sensor in 3D Environment . . . 6-21

Visualize Depth and Semantic Segmentation Data in 3D Environment
. 6-30

Visualize 3D Simulation Sensor Coverages and Detections 6-35

Customize 3D Scenes for Automated Driving . 6-43

Install Support Package for Customizing Scenes 6-44
Verify Software and Hardware Requirements . 6-44
Install Support Package . 6-44
Set Up Scene Customization Using Support Package 6-44

Customize Scenes Using Simulink and Unreal Editor 6-47
Open Unreal Editor from Simulink . 6-47
Reparent Actor Blueprint . 6-48
Create or Modify Scenes in Unreal Editor . 6-49
Run Simulation . 6-50

Package Custom Scenes into Executable . 6-52
Package Scene into Executable Using Unreal Editor 6-52
Simulate Scene from Executable in Simulink . 6-53

Apply Semantic Segmentation Labels to Custom Scenes 6-54

vii

Sensor Configuration and Coordinate
System Transformations

• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Calibrate a Monocular Camera” on page 1-9

1

Coordinate Systems in Automated Driving Toolbox
Automated Driving Toolbox uses these coordinate systems:

• World: A fixed universal coordinate system in which all vehicles and their sensors are placed.
• Vehicle: Anchored to the ego vehicle. Typically, the vehicle coordinate system is placed on the

ground right below the midpoint of the rear axle.
• Sensor: Specific to a particular sensor, such as a camera or a radar.
• Spatial: Specific to an image captured by a camera. Locations in spatial coordinates are

expressed in units of pixels.
• Pattern: A checkerboard pattern coordinate system, typically used to calibrate camera sensors.

These coordinate systems apply across Automated Driving Toolbox functionality, from perception to
control to driving scenario simulation. For information on specific differences and implementation
details in the 3D simulation environment using the Unreal Engine® from Epic Games®, see
“Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-10.

World Coordinate System
All vehicles, sensors, and their related coordinate systems are placed in the world coordinate system.
A world coordinate system is important in global path planning, localization, mapping, and driving
scenario simulation. Automated Driving Toolbox uses the right-handed Cartesian world coordinate
system defined in ISO 8855, where the Z-axis points up from the ground. Units are in meters.

Vehicle Coordinate System
The vehicle coordinate system (XV, YV, ZV) used by Automated Driving Toolbox is anchored to the ego
vehicle. The term ego vehicle refers to the vehicle that contains the sensors that perceive the
environment around the vehicle.

• The XV axis points forward from the vehicle.
• The YV axis points to the left, as viewed when facing forward.
• The ZV axis points up from the ground to maintain the right-handed coordinate system.

The vehicle coordinate system follows the ISO 8855 convention for rotation. Each axis is positive in
the clockwise direction, when looking in the positive direction of that axis.

1 Sensor Configuration and Coordinate System Transformations

1-2

In most Automated Driving Toolbox functionality, such as cuboid driving scenario simulations and
visual perception algorithms, the origin of the vehicle coordinate system is on the ground, below the
midpoint of the rear axle. In 3D driving scenario simulations, the origin is on ground, below the
longitudinal and lateral center of the vehicle. For more details, see “Coordinate Systems for 3D
Simulation in Automated Driving Toolbox” on page 6-10.

Locations in the vehicle coordinate system are expressed in world units, typically meters.

Values returned by individual sensors are transformed into the vehicle coordinate system so that they
can be placed in a unified frame of reference.

For global path planning, localization, mapping, and driving scenario simulation, the state of the
vehicle can be described using the pose of the vehicle. The steering angle of the vehicle is positive in
the counterclockwise direction.

 Coordinate Systems in Automated Driving Toolbox

1-3

Sensor Coordinate System
An automated driving system can contain sensors located anywhere on or in the vehicle. The location
of each sensor contains an origin of its coordinate system. A camera is one type of sensor used often
in an automated driving system. Points represented in a camera coordinate system are described with
the origin located at the optical center of the camera.

The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles have positive
clockwise directions when looking in the positive direction of the Z-, Y-, and X-axes, respectively.

1 Sensor Configuration and Coordinate System Transformations

1-4

 Coordinate Systems in Automated Driving Toolbox

1-5

1 Sensor Configuration and Coordinate System Transformations

1-6

Spatial Coordinate System
Spatial coordinates enable you to specify a location in an image with greater granularity than pixel
coordinates. In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely identified by
an integer row and column pair, such as (3,4). In the spatial coordinate system, locations in an image
are represented in terms of partial pixels, such as (3.3,4.7).

For more information on the spatial coordinate system, see “Spatial Coordinates” (Image Processing
Toolbox).

Pattern Coordinate System
To estimate the parameters of a monocular camera sensor, a common technique is to calibrate the
camera using multiple images of a calibration pattern, such as a checkerboard. In the pattern
coordinate system, (XP, YP), the XP-axis points to the right and the YP-axis points down. The
checkerboard origin is the bottom-right corner of the top-left square of the checkerboard.

Each checkerboard corner represents another point in the coordinate system. For example, the
corner to the right of the origin is (1,0) and the corner below the origin is (0,1). For more information
on calibrating a camera by using a checkerboard pattern, see “Calibrate a Monocular Camera” on
page 1-9.

See Also

More About
• “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-10
• “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics Blockset)

 Coordinate Systems in Automated Driving Toolbox

1-7

• “Coordinate Systems” (Computer Vision Toolbox)
• “Image Coordinate Systems” (Image Processing Toolbox)
• “Calibrate a Monocular Camera” on page 1-9

1 Sensor Configuration and Coordinate System Transformations

1-8

Calibrate a Monocular Camera
A monocular camera is a common type of vision sensor used in automated driving applications. When
mounted on an ego vehicle, this camera can detect objects, detect lane boundaries, and track objects
through a scene.

Before you can use the camera, you must calibrate it. Camera calibration is the process of estimating
the intrinsic and extrinsic parameters of a camera using images of a calibration pattern, such as a
checkerboard. After you estimate the intrinsic and extrinsic parameters, you can use them to
configure a model of a monocular camera.

Estimate Intrinsic Parameters
The intrinsic parameters of a camera are the properties of the camera, such as its focal length and
optical center. To estimate these parameters for a monocular camera, use Computer Vision Toolbox™
functions and images of a checkerboard pattern.

• If the camera has a standard lens, use the estimateCameraParameters function.
• If the camera has a fisheye lens, use the estimateFisheyeParameters function.

Alternatively, to better visualize the results, use the Camera Calibrator app. For information on
setting up the camera, preparing the checkerboard pattern, and calibration techniques, see “Single
Camera Calibrator App” (Computer Vision Toolbox).

Place Checkerboard for Extrinsic Parameter Estimation
For a monocular camera mounted on a vehicle, the extrinsic parameters define the mounting position
of that camera. These parameters include the rotation angles of the camera with respect to the
vehicle coordinate system, and the height of the camera above the ground.

Before you can estimate the extrinsic parameters, you must capture an image of a checkerboard
pattern from the camera. Use the same checkerboard pattern that you used to estimate the intrinsic
parameters.

The checkerboard uses a pattern-centric coordinate system (XP, YP), where the XP-axis points to the
right and the YP-axis points down. The checkerboard origin is the bottom-right corner of the top-left
square of the checkerboard.

 Calibrate a Monocular Camera

1-9

When placing the checkerboard pattern in relation to the vehicle, the XP- and YP-axes must align with
the XV- and YV-axes of the vehicle. In the vehicle coordinate system, the XV-axis points forward from
the vehicle and the YV-axis points to the left, as viewed when facing forward. The origin is on the road
surface, directly below the camera center (the focal point of the camera).

The orientation of the pattern can be either horizontal or vertical.

Horizontal Orientation

In the horizontal orientation, the checkerboard pattern is either on the ground or parallel to the
ground. You can place the pattern in front of the vehicle, in back of the vehicle, or on the left or right
side of the vehicle.

1 Sensor Configuration and Coordinate System Transformations

1-10

Vertical Orientation

In the vertical orientation, the checkerboard pattern is perpendicular to the ground. You can place
the pattern in front of the vehicle, in back of the vehicle, or on the left of right side of the vehicle.

 Calibrate a Monocular Camera

1-11

Estimate Extrinsic Parameters
After placing the checkerboard in the location you want, capture an image of it using the monocular
camera. Then, use the estimateMonoCameraParameters function to estimate the extrinsic
parameters. To use this function, you must specify the following:

• The intrinsic parameters of the camera
• The key points detected in the image, in this case the corners of the checkerboard squares
• The world points of the checkerboard
• The height of the checkerboard pattern's origin above the ground

For example, for image I and intrinsic parameters intrinsics, the following code estimates the
extrinsic parameters. By default, estimateMonoCameraParameters assumes that the camera is
facing forward and that the checkerboard pattern has a horizontal orientation.

[imagePoints,boardSize] = detectCheckerboardPoints(I);
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
patternOriginHeight = 0; % Pattern is on ground
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
 imagePoints,worldPoints,patternOriginHeight);

1 Sensor Configuration and Coordinate System Transformations

1-12

To increase estimation accuracy of these parameters, capture multiple images and average the values
of the image points.

Configure Camera Using Intrinsic and Extrinsic Parameters
Once you have the estimated intrinsic and extrinsic parameters, you can use the monoCamera object
to configure a model of the camera. The following sample code shows how to configure the camera
using parameters intrinsics, height, pitch, yaw, and roll:

monoCam = monoCamera(intrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll);

See Also
Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters | estimateFisheyeParameters |
estimateMonoCameraParameters | generateCheckerboardPoints

Objects
monoCamera

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Configure Monocular Fisheye Camera”
• “Single Camera Calibrator App” (Computer Vision Toolbox)
• “Fisheye Calibration Basics” (Computer Vision Toolbox)

 Calibrate a Monocular Camera

1-13

Ground Truth Labeling and Verification

• “Get Started with the Ground Truth Labeler” on page 2-2
• “Load Ground Truth Signals to Label” on page 2-4
• “Label Ground Truth for Multiple Signals” on page 2-9
• “Export Ground Truth Labels for Multiple Signals” on page 2-21
• “Sources vs. Signals in Ground Truth Labeling” on page 2-28
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30
• “Control Playback of Signal Frames for Labeling” on page 2-34
• “Label Lidar Point Clouds for Object Detection” on page 2-38
• “Create Class for Loading Custom Ground Truth Data Sources” on page 2-45

2

Get Started with the Ground Truth Labeler
The Ground Truth Labeler app enables you to interactively label ground truth data in a video,
image sequence, or lidar point cloud. Using the app, you can simultaneously label multiple signals,
such as data obtained from camera and lidar sensors mounted on a vehicle.

This example walks you through the multisignal ground truth labeling workflow in these steps.

1 “Load Ground Truth Signals to Label” on page 2-4 — Load multiple signals into the app and
configure the display of those signals.

2 “Label Ground Truth for Multiple Signals” on page 2-9 — Create label definitions and label the
signals by using automation algorithms.

3 “Export Ground Truth Labels for Multiple Signals” on page 2-21 — Export the labels from the
app and explore the data.

2 Ground Truth Labeling and Verification

2-2

You can use these exported labels, along with the associated signal frames, as training data for deep
learning applications.

See Also

More About
• “Choose an App to Label Ground Truth Data” (Computer Vision Toolbox)

 Get Started with the Ground Truth Labeler

2-3

Load Ground Truth Signals to Label
The Ground Truth Labeler app provides options for labeling two types of signals.

• Image signals are image-based. You can load these signals from sources such as videos or image
sequences.

• Point cloud signals are lidar-based. You can load these signals from sources such as a sequence of
point cloud files.

In this example, you load a video and a point cloud sequence into the app. These signals are taken
from a camera sensor and a lidar sensor mounted to a vehicle. The signals represent the same driving
scene.

Load Timestamps
Load the timestamps for the point cloud sequence. The timestamps are a duration vector that is in
the same folder as the sequence. To load the timestamps, you must temporarily add this folder to the
MATLAB® search path.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence');
addpath(pcSeqFolder)
load timestamps.mat
rmpath(pcSeqFolder)

The app also provides an option to specify timestamps for video sources. The video used in this
example does not have a separate timestamps file, so when you load the video, you can read the
timestamps directly from the video source.

Open Ground Truth Labeler App
To open the Ground Truth Labeler app, at the MATLAB command prompt, enter this command.

groundTruthLabeler

The app opens to an empty session.

Alternatively, you can open the app from the Apps tab, under Automotive.

Load Signals from Data Sources
The Ground Truth Labeler app enables you to load signals from multiple types of data sources. In
the app, a data source is a file or folder containing one or more signals to label.

• For the video, the data source is an MP4 file that contains a single video.
• For the point cloud sequence, the data source is a folder containing a sequence of point cloud data

(PCD) files. Together, these files represent a single point cloud sequence.

Other data sources, such as rosbags, can contain multiple signals that you can load. For more details
on the relationship between sources and signals, see “Sources vs. Signals in Ground Truth Labeling”
on page 2-28.

2 Ground Truth Labeling and Verification

2-4

Load Video

Load the video into the app.

1 On the app toolstrip, click Open > Add Signals.

The Add/Remove Signal dialog box opens with the Source Type parameter set to Video and the
Timestamps parameter set to From File.

2 In the File Name parameter, browse for this video file. matlabroot is the full path to your
MATLAB installation folder, as returned by the matlabroot function.

matlabroot\toolbox\driving\drivingdata\01_city_c2s_fcw_10s.mp4
3 Click Add Source. The video loads into the app, and the app reads the timestamps directly from

the video. The source table displays the information about the video data source.

Load Point Cloud Sequence

Load the point cloud sequence into the app.

1 With the Add/Remove Signal dialog box still open and the video loaded, set the Source Type
parameter to Point Cloud Sequence. The dialog box displays new options specific to loading
point cloud sequences.

2 In the Folder Name parameter, browse for the lidarSequence folder, which contains the
sequence of point cloud data (PCD) files to load.

matlabroot\toolbox\driving\drivingdata\lidarSequence
3 Set the Timestamps parameter to From Workspace. In the Import From Workspace dialog box,

select the timestamps variable that you loaded for the point cloud sequence. Click OK.

 Load Ground Truth Signals to Label

2-5

4 Click Add Source. The point cloud sequence loads into the app, and the app reads the
timestamps from the timestamps variable. The source table displays the information about the
data source for the point cloud sequence.

Verify Information About Loaded Signals

The table at the bottom of the Add/Remove Signal dialog box displays information about the loaded
signals. Verify that the table displays this information for the loaded signals.

• The Signal Name column displays the signal names generated by the app. For the video, the
signal name is the file name of the data source with the prefix video_ and with no file extension.
For the point cloud sequence, the signal name is the name of the source folder.

• The Source column displays the full file paths to the signal data sources.
• The Signal Type column displays the type of each signal. The video is of type Image. The point

cloud sequence is of type Point Cloud.
• The Time Range column displays the duration of the signals based on the loaded timestamp data.

Both signals are approximately 10 seconds long.

For the point cloud sequence, if you left Timestamps set to Use Default, then the Time Range
value for the sequence ranges from 0 to 33 seconds. This range is based on the 34 PCD files in the
folder. By default, the app sets the timestamps of a point cloud sequence to a duration vector from
0 to the number of valid point cloud files minus 1. Units are in seconds. If this issue occurs, in the
table, select the check box for the point cloud sequence row. Then, click Delete Selected, load the
signal again, and verify the signal information again.

After verifying that the signals loaded correctly, click OK. The app loads the signals and opens to the
first frame of the last signal added, which for this example is the point cloud sequence.

2 Ground Truth Labeling and Verification

2-6

Configure Signal Display
When you first load the signals, the app displays only one signal at a time. To display the signals side-
by-side, first, on the Label tab of the app toolstrip, click Display Grid. Then, move the pointer to
select a 1-by-2 grid and click the grid.

The video and point cloud sequence display side-by-side.

 Load Ground Truth Signals to Label

2-7

To view the video and point cloud sequence together, in the slider below the signals, click the Play

button . The video plays more smoothly than the point cloud sequence because the video has
more frames over approximately the same amount of time and therefore a higher frame rate.

By default, the app plays all frames from the signal with the highest frame rate. This signal is called
the master signal. For all other signals, the app displays the frame that is time-aligned with the
currently displaying frame of the master signal. To configure which signal is the master signal, use
the options in the Playback Control Settings dialog box. To open this dialog box, below the slider, click

the clock settings button . For more details about using these options to control the display of
signal frames, see “Control Playback of Signal Frames for Labeling” on page 2-34.

After loading the signal and viewing the frames, you can now create label definitions and label the
data, as described in “Label Ground Truth for Multiple Signals” on page 2-9.

See Also

More About
• “Sources vs. Signals in Ground Truth Labeling” on page 2-28
• “Control Playback of Signal Frames for Labeling” on page 2-34

2 Ground Truth Labeling and Verification

2-8

Label Ground Truth for Multiple Signals
After loading the video and lidar point cloud sequence signals into the Ground Truth Labeler app,
as described in the “Load Ground Truth Signals to Label” on page 2-4 procedure, create label
definitions and label the signal frames. In this example, you label only a portion of the signals for
illustrative purposes.

Create Label Definitions
Label definitions contain the information about the labels that you mark on the signals. You can
create label definitions interactively within the app or programmatically by using a
labelDefinitionCreatorMultisignal object. In this example, you create label definitions in the
app.

Create ROI Label

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. You can define
these ROI label types.

• Rectangle/Cuboid — Draw bounding box labels around objects, such as vehicles. In image
signals, you draw labels of this type as 2-D rectangular bounding boxes. In point cloud signals, you
draw labels of this type as 3-D cuboid bounding boxes.

• Line — Draw linear ROIs to label lines, such as lane boundaries.
• Pixel label — Draw pixels to label various classes, such as road or sky, for semantic

segmentation.

For more details about these ROI label definitions, see “ROI Labels, Sublabels, and Attributes”.

Create an ROI label definition for labeling cars in the signal frames.

1 On the ROI Labels pane in the left pane, click Label.
2 Create a Rectangle/Cuboid label named car.
3 From the Group list, select New Group and name the group Vehicles. Adding labels to groups

is optional.
4 Click OK. The Vehicles group name appears on the ROI Labels tab with the label car under it.

The car label is drawn differently on each signal. On the video, car is drawn as a 2-D rectangular
bounding box of type Rectangle. On the point cloud sequence, car is drawn as a 3-D cuboid
bounding box of type Cuboid.

Create ROI Sublabel

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a label definition that is in the ROI Labels tab. For example, in a driving scene, a

 Label Ground Truth for Multiple Signals

2-9

vehicle label can have sublabels for headlights, license plates, or wheels. For more details about
sublabels, see “ROI Labels, Sublabels, and Attributes”.

Create an ROI sublabel definition for labeling the brake lights of the labeled cars.

1 Select the parent label of the sublabel. On the ROI Labels tab in the left pane, click the car label
to select it.

2 Click Sublabel.
3 Create a Rectangle sublabel named brakeLight. Cuboid sublabels are not supported, so this

sublabel applies only for the video signal. Click OK.

The brakeLight sublabel appears in the ROI Labels tab under the car label. The sublabel and
parent label have the same color.

Create ROI Attribute

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes can include the type or color of a vehicle. You can define ROI attributes of
these types.

• Numeric Value — Specify a numeric scalar attribute, such as the number of doors on a labeled
vehicle.

• String — Specify a string scalar attribute, such as the color of a vehicle.
• Logical — Specify a logical true or false attribute, such as whether a vehicle is in motion.
• List — Specify a drop-down list attribute of predefined strings, such as make or model of a

vehicle.

For more details about these attribute types, see “ROI Labels, Sublabels, and Attributes”.

Create an attribute to describe whether a labeled brake light is on or off.

1 On the ROI Labels tab in the left pane, select the brakeLight sublabel and click Attribute.
2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave Default Value

set to Empty and click OK.
3 In the ROI Labels tab, expand the brakeLight sublabel definition. The Attribute box for this

sublabel now contains the isOn attribute.

2 Ground Truth Labeling and Verification

2-10

Create Scene Label

A scene label defines additional information across all signals in a scene. Use scene labels to describe
conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to apply to the signal frames.

1 In the left pane of the app, select the Scene Labels tab.
2 Click Define new scene label, and in the Label Name box, enter a scene label named

daytime.
3 Change the color of the label definition to light blue to reflect the nature of the scene label.

Under the Color parameter, click the color preview and select the standard light blue colors.
Then, click OK to close the color selection window.

 Label Ground Truth for Multiple Signals

2-11

4 Leave the Group parameter set to the default of None and click OK. The Scene Labels pane
shows the scene label definition.

Verify Label Definitions

Verify that your label definitions have this setup.

1 The ROI Labels tab contains a Vehicles group with a car label of type Rectangle/Cuboid.
2 The car label contains a sublabel named brakeLight.
3 The brakeLight sublabel contains an attribute named isOn.
4 The Scene Labels tab contains a light blue scene label named daytime.

2 Ground Truth Labeling and Verification

2-12

To edit or delete a label definition, right-click that label definition and select the appropriate edit or
delete option. To save these label definitions to a MAT-file for use in future labeling sessions, on the
Label tab of the app toolstrip, select Save > Label Definitions.

In future labeling sessions, if you need to reorder label definitions or move them to different groups,
you can drag and drop them in the label definition panes.

Label Video Using Automation
Use the car label to label one of the cars in a portion of the video. To assist with the labeling process,
use one of the built-in label automation algorithms.

1 Select the time interval to label. Specify an interval from 8 to 10 seconds, during which the car in
front is close to the ego vehicle. In the text boxes below the video, enter these times in this order:

a In the Current box, type 8 and press Enter.
b In the Start Time box, type 8 so that the slider is at the start of the time interval.
c In the End Time box, type 10.

The range slider and text boxes are set to this 8–10 second interval. The red flags indicate the
start and end of the interval.

The app displays signal frames from only this interval, and automation algorithms apply to only
this interval. To expand the time interval to fill the entire playback section, click Zoom In Time
Interval.

2 In the labeling window, click the video signal to select it. You can automate only one signal at a
time, so you must select the signal that you want to automate.

3 Select the label that you want to automate. In the ROI Labels tab, click the car label.
4 From the app toolstrip, select Select Algorithm > Temporal Interpolator. This algorithm

estimates rectangle ROIs between image frames by interpolating the ROI locations across the
time interval.

5 Click Automate. The app prompts you to confirm that you want to label only a portion of the
video. Click Yes. An automation session for the video opens. The right pane of the automation
session displays the algorithm instructions.

 Label Ground Truth for Multiple Signals

2-13

6 At the start of the time interval, click and drag to draw a car label around the car in the center of
the frame. For this algorithm, you can draw only one label per frame. Labeling the other car
would require a separate automation session.

2 Ground Truth Labeling and Verification

2-14

By default, the car label appears only when you move your pointer over it. Optionally, to always
display labels, on the app toolstrip, set Show ROI Labels to Always.

7 Drag the slider to the last frame and draw a car label around the same car in this frame.
Optionally, to improve automation results, label the car in intermediate frames.

8 Click Run. The automation algorithm applies the car label to the intermediate frames. Drag the
slider to view the results. If necessary, manually adjust the labels to improve their accuracy.

9 When you are satisfied with the results, click Accept to close the session and apply the labels to
this portion of the video.

Label Point Cloud Sequence Using Automation
Use the same car label definition from the previous procedure to label a car in the point cloud
sequence. To assist with the labeling process, use a built-in label automation algorithm designed for
point cloud labeling. In this example, you label the ego vehicle, which is easier to see in the lidar
point cloud sequence than the front car.

1 At the bottom of the app, verify that the time range is still set to 8 to 10 seconds.
2 In the labeling window, click the point cloud sequence to select it.
3 In the ROI Labels tab, click the car label definition.
4 On the Label tab of the app toolstrip, select Select Algorithm > Point Cloud Temporal

Interpolator. This algorithm estimates cuboid ROIs between point cloud frames by interpolating
the ROI locations across the time interval.

 Label Ground Truth for Multiple Signals

2-15

5 Click Automate. The app prompts you to confirm that you want to label only a portion of the
point cloud sequence. Click Yes. An automation session for the point cloud sequence opens. The
right pane of the automation session displays the algorithm instructions.

6 At the start of the time interval, draw a car label around the ego vehicle.

a
Zoom in on the car, using either the scroll wheel or the Zoom In button at the top-right

corner of the frame. You can also use the Pan button to center the car in the frame.

b On the ROI Labels tab in the left pane, click the car label. Drag the gray preview cuboid
until it highlights the ego vehicle.

2 Ground Truth Labeling and Verification

2-16

c Click the signal frame to create the label. The label snaps to the highlighted portion of the
point cloud.

d Adjust the cuboid label until it fully encloses the car. To resize the cuboid, click and drag one
of the cuboid faces. To move the cuboid, hold Shift and click and drag one of the cuboid
faces.

 Label Ground Truth for Multiple Signals

2-17

For additional tips and techniques for labeling point clouds, see “Label Lidar Point Clouds for
Object Detection” on page 2-38.

7 Click the cuboid and press Ctrl+C to copy it. Then, drag the slider to the last frame and paste
(Ctrl+V) the cuboid into the new frame at the same position. Optionally, to improve automation
results, manually adjust the position of the copied label.

8 Click Run. The automation algorithm applies the car label to the intermediate frames. Drag the
slider to view the results. If necessary, manually adjust the labels to improve their accuracy.

9 When you are satisfied with the results, click Accept to close the session and apply the labels to
this portion of the point cloud sequence.

Label with Sublabels and Attributes Manually
Manually label one frame of the video with the brakeLight sublabel and its isOn attribute. Lidar
point cloud signals do not support sublabels and attributes, so you cannot label the point cloud
sequence.

1 At the bottom of the app, verify that the time range is still set to 8 to 10 seconds. If necessary,
drag the slider to the first frame of the time range.

2 In the ROI Labels tab, click the brakeLight sublabel definition to select it.
3 Hide the point cloud sequence. On the Label tab of the app toolstrip, under Show/Hide Signals,

clear the check mark for the lidar point cloud sequence. Hiding a signal only hides the display.
The app maintains the labels for hidden signals, and you can still export them.

4 Expand the video signal to fill the entire labeling window.
5 In the video frame, select the drawn car label. The label turns yellow. You must select the car

label (parent ROI) before you can add a sublabel to it.
6 Draw brakeLight sublabels for the car. Optionally, set Show ROI Labels to Always so that you

can confirm the association between the car label and its sublabels.

2 Ground Truth Labeling and Verification

2-18

7 On the video frame, select one of the brakeLight sublabels. Then, on the Attributes and
Sublabels pane in the right pane, set the isOn attribute to True. Repeat this step for the other
sublabel.

For more details about working with sublabels and attributes, see “Use Sublabels and Attributes to
Label Ground Truth Data” (Computer Vision Toolbox).

 Label Ground Truth for Multiple Signals

2-19

Label Scene Manually
Apply the daytime scene label to the entire scene.

1 Expand the time interval back to the entire duration of all signals. If you zoomed in on the time
interval, first click Zoom Out Time Interval. Then, drag the red flags to the start and end of the
range slider.

2 In the left pane of the app, select the Scene Labels tab.
3 Select the daytime scene label definition.
4 Above the label definition, click Time Interval. Then, click Add Label. A check mark appears for

the daytime scene label indicating that the label now applies to all frames in the time interval.

View Label Summary
With all labels, sublabels, and attributes applied to at least one frame of a signal, you can now
optionally view a visual summary of the ground truth labels. On the app toolstrip, click View Label
Summary. For more details, see “View Summary of Ground Truth Labels” (Computer Vision Toolbox).

Save App Session
On the app toolstrip, select Save and save a MAT-file of the app session. The saved session includes
the data source, label definitions, and labeled ground truth. It also includes your session preferences,
such as the layout of the app.

You can now either close the app session or continue to the “Export Ground Truth Labels for Multiple
Signals” on page 2-21 step, where you export the labels.

See Also

More About
• “Label Lidar Point Clouds for Object Detection” on page 2-38
• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30
• “View Summary of Ground Truth Labels” (Computer Vision Toolbox)

2 Ground Truth Labeling and Verification

2-20

Export Ground Truth Labels for Multiple Signals
After labeling the signals by following the “Label Ground Truth for Multiple Signals” on page 2-9
procedure, export the labels and examine how they are stored.

Setup

Open the Ground Truth Labeler app session containing the labeled signals. You can open the
session from the MATLAB® command line. For example, if you saved the session to a MAT-file named
groundTruthLabelingSession, enter this command.

groundTruthLabeler groundTruthLabelingSession.mat

On the app toolstrip, select Export Labels > To Workspace. In the export to workspace window, use
the default export variable name, gTruth, and click OK. The app exports a
groundTruthMultisignal object, gTruth, to the MATLAB® workspace. This object contains the
ground truth labels captured from the app session.

If you did not export a groundTruthMultisignal object to the workspace, load a predefined object
from the variable gTruth. The function used to load this object is attached to this example as a
supporting file. If you are using your own object, data such as label positions can differ from the data
shown in this example.

if (~exist('gTruth','var'))
 gTruth = helperLoadGTruthGetStarted;
end

Display the properties of the groundTruthMultisignal object, gTruth. The object contains
information about the signal data sources, label definitions, and ROI and scene labels. This
information is stored in separate properties of the object.

gTruth

gTruth =

 groundTruthMultisignal with properties:

 DataSource: [1×2 vision.labeler.loading.MultiSignalSource]
 LabelDefinitions: [3×7 table]
 ROILabelData: [1×1 vision.labeler.labeldata.ROILabelData]
 SceneLabelData: [1×1 vision.labeler.labeldata.SceneLabelData]

In this example, you examine the contents of each property to learn how the object stores ground
truth labels.

Data Sources

The DataSource property contains information about the data sources. This property contains two
MultiSignalSource objects: one for the video source and one for the point cloud sequence source.
Display the contents of the DataSource property.

gTruth.DataSource

ans =

 Export Ground Truth Labels for Multiple Signals

2-21

 1×2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties:

 SourceName
 SourceParams
 SignalName
 SignalType
 Timestamp
 NumSignals

The information stored in these objects includes the paths to the data sources, the names of the
signals that they contain, and the timestamps for those signals. Display the signal names for the data
sources.

gTruth.DataSource.SignalName

ans =

 "video_01_city_c2s_fcw_10s"

ans =

 "lidarSequence"

Label Definitions

The LabelDefinitions property contains a table of information about the label definitions. Display
the label definitions table. Each row contains information about an ROI or scene label definition. The
car label definition has two rows: one for when the label is drawn as a rectangle on Image signals
and one for when the label is drawn as a cuboid on PointCloud signals.

gTruth.LabelDefinitions

ans =

 3×7 table

 Name SignalType LabelType Group Description LabelColor Hierarchy
 ___________ __________ _________ ____________ ___________ ____________ ____________

 {'car' } Image Rectangle {'Vehicles'} {0×0 char} {1×3 double} {1×1 struct}
 {'car' } PointCloud Cuboid {'Vehicles'} {0×0 char} {1×3 double} {1×1 struct}
 {'daytime'} Time Scene {'None' } {0×0 char} {1×3 double} {0×0 double}

The Hierarchy column stores information about the sublabel and attribute definitions of a parent
ROI label. Display the sublabel and attribute information for the car label when it is drawn as a
rectangle. This label contains one sublabel, brakeLight, and no attributes.

gTruth.LabelDefinitions.Hierarchy{1}

ans =

2 Ground Truth Labeling and Verification

2-22

 struct with fields:

 brakeLight: [1×1 struct]
 Type: Rectangle
 Description: ''

Display information about the brakeLight sublabel for the parent car label. The sublabel contains
one attribute, isOn. Sublabels cannot have their own sublabels.

gTruth.LabelDefinitions.Hierarchy{1}.brakeLight

ans =

 struct with fields:

 Type: Rectangle
 Description: ''
 LabelColor: [0.5862 0.8276 0.3103]
 isOn: [1×1 struct]

Display information about the isOn attribute for the brakeLight sublabel. This attribute has no
default value, so the DefaultValue field is empty.

gTruth.LabelDefinitions.Hierarchy{1}.brakeLight.isOn

ans =

 struct with fields:

 DefaultValue: []
 Description: ''

ROI Label Data

The ROILlabelData property contains an ROILabelData object with properties that contain ROI
label data for each signal. The names of the properties match the names of the signals. Display the
object property names.

gTruth.ROILabelData

ans =

 ROILabelData with properties:

 video_01_city_c2s_fcw_10s: [204×1 timetable]
 lidarSequence: [34×1 timetable]

Each property contains a timetable of ROI labels drawn at each signal timestamp, with one column
per label. View a portion the video and the lidar point cloud sequence timetables. Set a time interval
from 8 to 8.5 seconds. This time interval corresponds to the start of the time interval labeled in the

 Export Ground Truth Labels for Multiple Signals

2-23

“Label Ground Truth for Multiple Signals” on page 2-9 procedure. The video timetable contains more
rows than the point cloud sequence timetable because the video contains more label frames.

timeInterval = timerange(seconds(8),seconds(8.5));
videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s(timeInterval,:)
lidarLabels = gTruth.ROILabelData.lidarSequence(timeInterval,:)

videoLabels =

 10×1 timetable

 Time car
 ________ ____________

 8 sec {1×1 struct}
 8.05 sec {1×1 struct}
 8.1 sec {1×1 struct}
 8.15 sec {1×1 struct}
 8.2 sec {1×1 struct}
 8.25 sec {1×1 struct}
 8.3 sec {1×1 struct}
 8.35 sec {1×1 struct}
 8.4 sec {1×1 struct}
 8.45 sec {1×1 struct}

lidarLabels =

 2×1 timetable

 Time car
 __________ ____________

 8.0495 sec {1×9 double}
 8.3497 sec {1×9 double}

View the rectangle car labels for the first video frame in the time interval. The label data is stored in
a structure.

videoLabels.car{1}

ans =

 struct with fields:

 Position: [296 203 203 144]
 brakeLight: [1×2 struct]

The Position field stores the positions of the car labels. This frame contains only one car label, so
in this case, Position contains only one rectangle bounding box. The bounding box position is of the
form [x y w h], where:

• x and y specify the upper-left corner of the rectangle.

2 Ground Truth Labeling and Verification

2-24

• w specifies the width of the rectangle, which is the length of the rectangle along the x-axis.
• h specifies the height of the rectangle, which is the length of the rectangle along the y-axis.

The car label also contains two brakeLight sublabels at this frame. View the brakeLight
sublabels. The sublabels are stored in a structure array, with one structure per sublabel drawn on the
frame.

videoLabels.car{1}.brakeLight

ans =

 1×2 struct array with fields:

 Position
 isOn

View the bounding box positions for the sublabels.

videoLabels.car{1}.brakeLight.Position

ans =

 304 245 50 46

ans =

 435 243 54 51

View the values for the isOn attribute in each sublabel. For both sublabels, this attribute is set to
logical 1 (true).

videoLabels.car{1}.brakeLight.isOn

ans =

 logical

 1

ans =

 logical

 1

Now view the cuboid car labels for the first point cloud sequence frame in the time interval. Point
cloud sequences do not support sublabels or attributes. Instead of storing cuboid labels in the
Position field of a structure, cuboid bounding box positions are stored in an M-by-9 matrix, where M
is the number of cuboid labels. Because this frame contains only one cuboid label, in this case M is 1.

 Export Ground Truth Labels for Multiple Signals

2-25

lidarLabels.car{1}

ans =

 Columns 1 through 7

 -1.1559 -0.7944 1.2012 12.6196 5.9278 3.0010 0

 Columns 8 through 9

 0 0

The 1-by-9 bounding box position is of the form [xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-, y-, and z-axis, respectively.
• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-, y-, and z-axis,

respectively. These angles are clockwise-positive when looking in the forward direction of their
corresponding axes.

This figure shows how these values specify the position of a cuboid.

Scene Label Data

The SceneLabelData property contains a SceneLabelData object with properties that contain
scene label data across all signals. The names of the properties match the names of the scene labels.
Display the object property names.

gTruth.SceneLabelData

ans =

2 Ground Truth Labeling and Verification

2-26

 SceneLabelData with properties:

 daytime: [0 sec 10.15 sec]

The daytime label applies to the entire time interval, which is approximately 10 seconds.

Use Ground Truth Labels

The labels shown in this example are for illustrative purposes only. For your own labeling, after you
export the labels, you can use them as training data for object detectors. To gather label data from
the groundTruthMultisignal object for training, use the gatherLabelData function.

To share labeled ground truth data, share the ground truth MAT-file containing the
groundTruthMultisignal object, not the MAT-file containing the app session. For more details, see
“Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox).

See Also
ROILabelData | SceneLabelData | gatherLabelData | groundTruthMultisignal

More About
• “Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)
• “How Labeler Apps Store Exported Pixel Labels” (Computer Vision Toolbox)

 Export Ground Truth Labels for Multiple Signals

2-27

Sources vs. Signals in Ground Truth Labeling
In the Ground Truth Labeler app, a source is the file or folder containing the data that you want to
load. A signal is the data from that source that you want to label. A source can contain one or more
signals.

In many cases, a source contains only one signal. Consider an AVI video file. The source is the AVI file
and the signal is the video that you load from that file. Other sources that have only one signal
include Velodyne® packet capture (PCAP) files and folders that contain image or point cloud
sequences.

Sources such as rosbags can contain multiple signals. Consider a rosbag named cal_loop.bag. The
rosbag contains data obtained from four sensors mounted on a vehicle. The source is the rosbag file.
The signals in the rosbag are sensor_msgs topics that correspond to the data from the four sensors.
The topics have these names.

• /center_camera/image_color — Image sequence obtained from the center camera
• /left_camera/image_color — Image sequence obtained from the left camera
• /right_camera/image_color — Image sequence obtained from the right camera
• /velodyne_points — Point cloud sequence obtained from a Velodyne lidar sensor

This diagram depicts the relationship between the source and each of its four signals.

2 Ground Truth Labeling and Verification

2-28

See Also
groundTruthMultisignal | vision.labeler.loading.MultiSignalSource

More About
• “Load Ground Truth Signals to Label” on page 2-4

 Sources vs. Signals in Ground Truth Labeling

2-29

Keyboard Shortcuts and Mouse Actions for Ground Truth
Labeler

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Label Definitions
Task Action
In the ROI Label Definition pane, navigate
through ROI labels and their groups

Up arrow or down arrow

In the Scene Label Definition pane, navigate
through scene labels and their groups

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels
between groups

Click and drag labels

Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings
Navigate between frames in a video or image sequence, and change the time interval of the video or
image sequence. These controls are located in the bottom pane of the app.

Task Action
Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame • PC: End

• Mac: Hold Fn and press the right arrow
Go to the first frame • PC: Home

• Mac: Hold Fn and press the left arrow
Navigate through time interval boxes and frame
navigation buttons

Tab

Commit time interval settings Press Enter within the active time interval box
(Start Time, Current, or End Time)

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs).

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A
Select specific rectangle and line ROIs Hold Ctrl and click the ROIs you want to select

2 Ground Truth Labeling and Verification

2-30

Task Action
Cut selected rectangle and line ROIs Ctrl+X
Copy selected rectangle and line ROIs to
clipboard

Ctrl+C

Paste copied rectangle and line ROIs

• If a sublabel was copied, both the sublabel
and its parent label are pasted.

• If a parent label was copied, only the parent
label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data”
(Computer Vision Toolbox).

Ctrl+V

Delete selected rectangle and line ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Paste copied pixel ROIs Ctrl+Shift+V
Fill all or all remaining pixels Shift+click

Cuboid Drawing
Draw cuboids to label lidar point clouds. For examples on how to use these shortcuts to label lidar
point clouds efficiently, see “Label Lidar Point Clouds for Object Detection” on page 2-38.

Note To enable these shortcuts, you must first click within the point cloud frame to select it.

Task Action
Resize a cuboid uniformly across all dimensions
before applying it to the point cloud

Hold A and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the x-dimension before
applying it to the point cloud

Hold X and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the y-dimension before
applying it to the point cloud

Hold Y and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the z-dimension before
applying it to the point cloud

Hold Z and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid after applying it to the point
cloud

Click and drag one of the cuboid faces

Move a cuboid Hold Shift and click and drag one of the cuboid
faces

The cuboid is translated along the dimension of
the selected face.

Rotate the point cloud display Hold R and click and drag the point cloud display

 Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler

2-31

Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one
or more line segments.

Task Action
Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segment in a
polyline

Backspace

Cancel drawing and delete the entire polyline Escape

Polygon Drawing
Draw polygons to label pixels on a frame.

Task Action
Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from
a polygon

Backspace

Cancel drawing and delete the entire polygon Escape

Zooming
Zooming in and out operates differently on the frames of an image signal than it does for the point
clouds of a lidar signal.

2 Ground Truth Labeling and Verification

2-32

Task Action
Zoom in or out of an image frame Move the scroll wheel up to zoom in or down to

zoom out

If the frame is in pan mode, then zooming is not
supported. To enable zooming, in the upper-right
corner of the frame, either click the Pan button

 to disable panning or click one of the zoom
buttons.

Zoom in on specific section of an image frame In the upper-right corner of the frame, click the
Zoom In button and then draw a box around
the section of the frame that you want to zoom in
on

Zooming in on a specific section of a point cloud
is not supported.

Zoom in on a point cloud Move the scroll wheel up, or click within the
point cloud and move the cursor up or left

Zooming in is supported in all modes (pan, zoom,
and rotate).

Zoom out of a point cloud Move the scroll wheel down, or click within the
point cloud and move the cursor down or right

Zooming out is supported in all modes (pan,
zoom, and rotate).

App Sessions
Task Action
Save current session Ctrl+S

See Also
Ground Truth Labeler

More About
• “Get Started with the Ground Truth Labeler” on page 2-2

 Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler

2-33

Control Playback of Signal Frames for Labeling
The Ground Truth Labeler app enables you to label multiple image or lidar point cloud signals
simultaneously. When playing the signals or navigating between frames, you can control which
frames display for each signal by changing the frame rate at which the signals display.

Signal Frames
The signals that you label are composed of frames. Each frame has a discrete timestamp associated
with it, but the app treats each frame as a duration of [t0, t1), where:

• t0 is the timestamp of the current frame.
• t1 is the timestamp of the next frame.

When you label a frame that displays in the app, the label applies to the duration of that frame.

The intervals between frames are units of time, such as seconds. This time interval is the frame rate
of the signal. Specify the timestamps for a signal as a duration vector. Each timestamp corresponds
to the start of a frame.

Master Signal
When you load multiple signals into a new app session, by default, the app designates the signal with
the highest frame rate as the master signal. When you play back signals or navigate between frames,
the app displays all frames from the master signal.

In the app, you can label signals only from within the time range of the master signal. When you view
a frame from the master signal, the app displays the frames from all other signals that are at that
timestamp. In this scenario, when navigating between frames, frames from signals with lower frame
rates are sometimes repeated.

Consider an app session containing two signals: a video, v, and a lidar point cloud sequence, pc.

• The video has a frame rate of 4 frames per second, with a 0.25-second duration per frame. This
signal is the master signal.

• The point cloud sequence has a frame rate of 2.5 frames per second, with a 0.4-second duration
per frame.

This figure shows the frames that display over the first second in this scenario.

2 Ground Truth Labeling and Verification

2-34

At time 0, the app displays the initial frame for each signal: v1 for the video and pc1 for the point
cloud sequence. When you click the Next Frame button, the time skips to 0.25 seconds.

• For the video, the app displays the next frame, v2.
• For the point cloud sequence, the app displays pc1 again.

The app repeats the point cloud frame because the next point cloud frame, pc2, does not start until
0.4 seconds. To display this frame, you must either set the Current Time parameter to 0.4 seconds
or click the Next Frame button again to navigate to a time of 0.5 seconds.

Keep the signal with the highest frame rate as the master signal when you want to display and label
all frames for all signals.

Change Master Signal
After loading signals, you can change the master signal from the Playback Control Settings dialog

box. To open this dialog box, below the slider, click the clock settings button . Then, select
Master signal and change the master signal to a different signal loaded into the app. When you
change the master signal to a signal with a lower frame rate, frames from signals with higher frame
rates are sometimes skipped.

Consider the app session described in the previous section, except with the point cloud sequence as
the master signal.

 Control Playback of Signal Frames for Labeling

2-35

When you skip from pc2 to pc3, the app skips over v3 entirely. You can see v3 only if you set Current
Time to a time in the range [0.5, 0.75).

Designate the signal with the lowest frame rate as the master signal when you want to label signals
only at synchronized times.

Changing the master signal after you begin labeling can affect existing scene labels. For example,
suppose you apply a scene label to the entire time range of the master signal. If you change the
master signal, the time range changes. If the new master signal has a longer duration, then the scene
label no longer applies to the entire time range.

If you load a new signal into an app session that has a higher frame rate than the existing signals, the
app does not automatically designate the new signal as the master signal. The app chooses a master
signal only the first time you load signals into a session. To designate the new signal as the master
signal, select that signal from the Master signal list in the Playback Control Settings dialog box.

Display All Timestamps
In the Playback Control Settings dialog box, you can select All timestamps to display all signals.
Choose this option to verify and visualize the loaded frames. Do not select this option for labeling.
When you display all timestamps, the navigation between frames is uneven and the frames of multiple
signals are repeated.

Consider the app session described in the previous sections, except with all timestamps displaying.
This figure shows the frames that display.

2 Ground Truth Labeling and Verification

2-36

Specify Timestamps
You can specify your own timestamp vector and use those timestamps as the ones that the app uses to
navigate between frames. In the Playback Control Settings dialog box, select Timestamps from
workspace, click the From Workspace button, and specify a duration vector from the MATLAB
workspace.

Frame Display and Automation
When you select a signal for automation, in the automation session, the app displays all frames of the
selected signal for the specified time interval. Because you can automate only one signal at a time,
the app plays back the signal frames at the frame rate for that signal.

See Also
duration | groundTruthMultisignal

More About
• “Load Ground Truth Signals to Label” on page 2-4

 Control Playback of Signal Frames for Labeling

2-37

Label Lidar Point Clouds for Object Detection
The Ground Truth Labeler app enables you to label point cloud data obtained from lidar sensors. To
label point clouds, you use cuboids, which are 3-D bounding boxes that you draw around the points in
a point cloud. You can use cuboid labels to create ground truth data for training object detectors.

This example walks you through labeling lidar point cloud data by using cuboids.

Set Up Lidar Point Cloud Labeling
Load a point cloud sequence into the app and define a cuboid label.

1 Open the Ground Truth Labeler app. At the MATLAB command prompt, enter this command.

groundTruthLabeler
2 On the app toolstrip, select Open > Add Signals.
3 In the Add/Remove Signal dialog box, set Source Type to Point Cloud Sequence.
4 In the Folder Name parameter, browse for the lidarSequence folder, which contains the point

cloud sequence. matlabroot is the full path to your MATLAB installation folder, as returned by
the matlabroot function.

matlabroot\toolbox\driving\drivingdata\lidarSequence
5 Click Add Source to load the point cloud sequence, using the default timestamps. Then, click

OK to close the Add/Remove Signal dialog box. The app displays the first point cloud in the
sequence.

6 In the ROI Labels pane on the left side of the app, click Label.
7 Create a Rectangle/Cuboid label named car. Click OK.

This figure shows the Ground Truth Labeler app setup after following these steps.

2 Ground Truth Labeling and Verification

2-38

Zoom, Pan, and Rotate Frame
The zoom, pan, and 3-D rotation options help you locate and label objects of interest in a point cloud.
Use these tools to zoom in and center on the ego vehicle in the first point cloud frame. The ego
vehicle is located at the origin of the point cloud.

1
In the upper-right corner of the frame, click the Zoom In button .

2 Click the ego vehicle until you are zoomed in enough to see the points that make it up.

Optionally, you can use the Pan button or Rotate 3D button to help you view more of the ego
vehicle points.

Hide Ground
The point cloud data includes points from the ground, which can make it more difficult to isolate the
ego vehicle points. The app provides an option to hide the ground by using the
segmentGroundFromLidarData function.

Hide the ground points from the point cloud. On the app toolstrip, on the Lidar tab, click Hide
Ground. This setting applies to all frames in the point cloud.

 Label Lidar Point Clouds for Object Detection

2-39

This option only hides the ground from the display. It does not remove ground data from the point
cloud. If you label a section of the point cloud containing hidden ground points, when you export the
ground truth labels, those ground points are a part of that label.

To configure the ground hiding algorithm, click Ground Settings and adjust the options in the Hide
Ground dialog box.

Label Cuboid
Label the ego vehicle by using a cuboid label.

1 In the ROI Labels pane on the left, click the car label.
2 Select the lidar point sequence frame by clicking the lidarSequence tab.

Note To enable the labeling keyboard shortcuts, you must first select the signal frame.
3 Move the pointer over the ego vehicle until the gray preview cuboid encloses the ego vehicle

points. The points enclosed in the preview cuboid highlight in yellow.

To resize the preview cuboid, hold the A key and move the mouse scroll wheel up or down.

2 Ground Truth Labeling and Verification

2-40

Optionally, to resize the preview cuboid in only the x-, y-, or z-direction, move the scroll wheel up
and down while holding the X, Y, or Z key, respectively.

4 Click the signal frame to draw the cuboid. Because the Shrink to Fit option is selected by
default on the app toolstrip, the cuboid shrinks to fit the points within it.

For more control over the labeling of point clouds, on the app toolstrip, click Snap to Cluster. When
you label with this option selected, the cuboid snaps to the nearest point cloud cluster by using the
segmentLidarData function. To configure point cloud clustering, click Cluster Settings and adjust
the options in the dialog box.

 Label Lidar Point Clouds for Object Detection

2-41

Modify Cuboid Label
After drawing a cuboid label, you can resize or move the cuboid to make the label more accurate. For
example, in the previous procedure, the Shrink to Fit option shrinks the cuboid label to fit the
detected ego vehicle points. The actual ego vehicle is slightly larger than this cuboid. Expand the size
of this cuboid until it more accurately reflects the size of the ego vehicle.

1 To enable the point cloud labeling keyboard shortcuts, verify that the lidarSequence tab is
selected.

2 In the signal frame, click the drawn cuboid label. Drag the faces to expand the cuboid.

3 Move the cuboid until it is centered on the ego vehicle. Hold Shift and drag the faces of the
cuboid.

2 Ground Truth Labeling and Verification

2-42

Apply Cuboids to Multiple Frames
When labeling objects between frames, you can copy cuboid labels and paste them to other frames.

1 Select the cuboid for the ego vehicle and press Ctrl+C to copy it.
2

At the bottom of the app, click the Next Frame button to navigate to the next frame.
3 Press Ctrl+V to paste the cuboid onto the frame.

You can also use an automation algorithm to apply a label to multiple frames. The app provides a
built-in temporal interpolation algorithm for labeling point clouds in intermediate frames. For an
example that shows that how to apply this automation algorithm, see “Label Ground Truth for
Multiple Signals” on page 2-9.

Configure Display
The app provides additional options for configuring the display of signal frames.

Change Colormap

For additional control over the point cloud display, on the Lidar tab, you can change the colormap
options. You can also change the colormap values by changing the Colormap Value parameter,
which has these options:

• Z Height — Colormap values increase along the z-axis. Select this option when finding objects
that are above the ground, such as traffic signs.

• Radial Distance — Colormap values increase away from the point cloud origin. Select this
option when finding objects that are far from the origin.

 Label Lidar Point Clouds for Object Detection

2-43

Change Views

On the Lidar tab of the app toolstrip, the Camera View section contains options for changing the
perspective from which you view the point cloud. These views are centered at the point cloud origin,
which is the assumed position of the ego vehicle.

You can select from these views:

• Bird's Eye View — View the point cloud from directly above the ego vehicle.
• Chase View — View the point cloud from a few meters behind the ego vehicle.
• Ego View — View the point cloud from inside the ego vehicle.

These views assume that the vehicle is traveling along the positive x-direction of the point cloud. If
the vehicle is traveling in a different direction, set the appropriate option in the Ego Direction
parameter.

Use these views when verifying your point cloud labels. Avoid using these views while labeling.
Instead, use the default view and locate objects to label by using the pan, zoom, and rotation options.

See Also

More About
• “Get Started with the Ground Truth Labeler” on page 2-2
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30

2 Ground Truth Labeling and Verification

2-44

Create Class for Loading Custom Ground Truth Data Sources
In the Ground Truth Labeler app, you can label signals from image and point cloud data sources.
These sources include videos, image sequences, point cloud sequences, Velodyne packet capture
(PCAP) files, and rosbags. To load data sources that the app does not natively support, you can create
a class to load that source into the app.

This example shows how to use one of the predefined data source classes that load signals from data
sources into the Ground Truth Labeler app: the
vision.labeler.loading.PointCloudSequenceSource class. The app uses this specific class
to load sequences of point cloud data (PCD) or polygon (PLY) files from a folder.

To get started, open the vision.labeler.loading.PointCloudSequenceSource class. Use the
properties and methods described for this class to help you write your own custom class.

edit vision.labeler.loading.PointCloudSequenceSource

Custom Class Folder
The Ground Truth Labeler app recognizes data source classes only if those files are in a +vision/
+labeler/+loading folder that is on the MATLAB search path.

The vision.labeler.loading.PointCloudSequenceSource class and other predefined data
source classes are stored in this folder.

matlabroot\toolbox\vision\vision\+vision\+labeler\+loading

In this path, matlabroot is the root of your MATLAB folder.

Save the data source classes that you create to this folder. Alternatively, create your own +vision/
+labeler/+loading folder, add it to the MATLAB search path, and save your class to this folder.

Class Definition
Data source classes must inherit from the vision.labeler.loading.MultiSignalSource class.
View the class definition for the vision.labeler.loading.PointCloudSequenceSource class.

classdef PointCloudSequenceSource < vision.labeler.loading.MultiSignalSource

When you load a point cloud sequence signal into the Ground Truth Labeler app, the app creates an
instance of the class, that is, a PointCloudSequenceSource object. After labeling this signal in the
app, when you export the labels, the exported groundTruthMultisignal object stores this
PointCloudSequenceSource object in its DataSource property.

When defining your data source class, replace PointCloudSequenceSource with the name of your
custom data source class.

Class Properties
Data source classes must define these abstract, constant properties.

• Name — A string scalar specifying the type of the data source

 Create Class for Loading Custom Ground Truth Data Sources

2-45

• Description — A string scalar describing the class

In the Ground Truth Labeler app, when you load signals from the Add/Remove Signal dialog box,
the Name string appears as an option in the Source Type parameter. This figure shows the Name
string for the vision.labeler.loading.PointCloudSequenceSource class.

The Description string does not appear in the dialog box. However, both the Name and
Description strings are stored as read-only properties in instances of this class.

This code shows the Name and Property strings for the
vision.labeler.loading.PointCloudSequenceSource class.

 properties (Constant)
 Name = "Point Cloud Sequence"

 Description = "A PointCloud sequence reader"
 end

When defining your data source class, define the Name and Description property values to match
the name and description of your custom data source. You can also define any additional private
properties that are specific to loading your data source. The source-specific properties for the
vision.labeler.loading.PointCloudSequenceSource class are not shown in this example,
but you can view them in the class file.

Method to Customize Load Panel
In data source classes, the customizeLoadPanel method controls the display of the panel for
loading signals in the Add/Remove Signal dialog box of the app. This panel is a Panel object created
by using the uipanel function. The panel contains the parameters and controls needed to load
signals from data sources.

This figure shows the loading panel for the
vision.labeler.loading.PointCloudSequenceSource class. In the Source Type list, when
you select Point Cloud Sequence, the app calls the customizeLoadPanel method and loads the
panel for point cloud sequences.

2 Ground Truth Labeling and Verification

2-46

This code shows the customizeLoadPanel method for the
vision.labeler.loading.PointCloudSequenceSource class. This method uses the
uicontrol function to define the text, buttons, and parameters in the panel.

 function customizeLoadPanel(this, panel)
 this.Panel = panel;

 computePositions(this);

 this.FolderPathText = uicontrol('Parent', this.Panel,...
 'Style', 'text',...
 'String', 'Folder Name: ',...
 'Position', this.FolderPathTextPos,...
 'HorizontalAlignment', 'left',...
 'Tag', 'fileText');

 this.FolderPathBox = uicontrol('Parent', this.Panel,...
 'Style', 'edit',...
 'String', '',...
 'Position', this.FolderPathBoxPos,...
 'Tag', 'fileEditBox');

 this.FolderTextBox = uicontrol('Parent', this.Panel,...
 'Style', 'Text',...
 'String', 'Only PCD/PLY files are supported.',...
 'Position', this.FolderTextPos,...
 'Tag', 'fileText');

 this.FolderBrowseButton = uicontrol('Parent', this.Panel,...
 'Style', 'togglebutton',...
 'String', 'Browse',...
 'Position', this.FolderBrowseButtonPos,...
 'Callback', @this.browseButtonCallback,...
 'Tag', 'browseBtn');

 this.TimeStampsText = uicontrol('Parent', this.Panel,...
 'Style', 'text',...
 'String', 'Timestamps: ',...
 'Position', this.TimeStampsTxtPos,...
 'HorizontalAlignment', 'left',...
 'Tag', 'timeStampTxt');

 this.TimeStampsDropDown = uicontrol('Parent', this.Panel,...

 Create Class for Loading Custom Ground Truth Data Sources

2-47

 'Style', 'popupmenu',...
 'String', ["Use Default", "From Workspace"],...
 'Position', this.TimeStampsDropDownPos,...
 'Callback', @this.timeStampsDropDownCallback,...
 'Tag', 'timeStampSourceSelectList');

 this.TimeStampsNote = uicontrol('Parent', this.Panel,...
 'Style', 'text',...
 'String', 'Default timestamps = (0:numPointClouds-1) s',...
 'Position', this.TimeStampsNotePos,...
 'HorizontalAlignment', 'left',...
 'Tag', 'timeStampNote');
 end

When developing this method or other data source methods, you can use the static method
loadPanelChecker to preview the display and functionality of the loading dialog box for your
custom data source. This method does not require you to have an app session open to use it. For
example, use the loadPanelChecker method with the
vision.labeler.loading.PointCloudSequence class.

vision.labeler.loading.PointCloudSequenceSource.loadPanelChecker

Methods to Get Load Panel Data and Load Data Source
In the Add/Remove Signal dialog box, after you browse for a signal, set the necessary parameters,
and click Add Source, the app calls these two methods in succession.

• getLoadPanelData — Get the data entered into the panel.
• loadSource — Load the data into the app.

This figure shows the relationship between these methods and the Add Source button when loading
a point cloud sequence signal by using the
vision.labeler.loading.PointCloudSequenceSource class.

When defining a custom data source, you must define the getLoadPanelData method, which
returns these outputs.

• sourceName — The name of the data source
• sourceParams — A structure containing fields with information required to load the data source

2 Ground Truth Labeling and Verification

2-48

This code shows the getLoadPanelData method for the
vision.labeler.loading.PointCloudSequenceSource class. This method sets sourceName to
the name entered in the Folder Name parameter of the dialog box and sourceParams to an empty
structure. If the Timestamps parameter is set to From Workspace and has timestamps loaded, then
the app populates this structure with those timestamps.

 function [sourceName, sourceParams] = getLoadPanelData(this)
 sourceName = string(this.FolderPathBox.String);
 sourceParams = struct();
 end

You must also define the loadSource method in your custom data class. This method must take the
sourceName and sourceParams returned from the getLoadPanelData method as inputs. This
method must also populate these properties, which are stored in the instance of the data source
object that the app creates.

• SignalName — String identifiers for each signal in a data source
• SignalType — An array of vision.labeler.loading.SignalType enumerations defining the

type of each signal in the data source
• Timestamp — A vector or cell array of timestamps for each signal in the data source
• SourceName — The name of the data source
• SourceParams — A structure containing fields with information required to load the data source

This code shows the loadSource method for the
vision.labeler.loading.PointCloudSequenceSource class. This method performs these
actions.

1 Check that the point cloud sequence has the correct extension and save the information required
for reading the point clouds into a fileDatastore object.

2 Set the Timestamp property of the data source object.

• If timestamps are loaded from a workspace variable (Timestamps = From workspace), then
the method sets Timestamp to the timestamps stored in the sourceParams input.

• If timestamps are derived from the point cloud sequence itself (Timestamps = Use
Default), then the method sets Timestamp to a duration vector of seconds, with one
second per point cloud.

3 Validate the loaded point cloud sequence.
4 Set the SignalName property to the name of the data source folder.
5 Set the SignalType property to the PointCloud signal type.
6 Set the SourceName and SourceParams properties to the sourceName and sourceParams

outputs, respectively.

 function loadSource(this, sourceName, sourceParams)

 % Load file
 ext = {'.pcd', '.ply'};
 this.Pcds = fileDatastore(sourceName,'ReadFcn', @pcread, 'FileExtensions', ext);

 % Populate timestamps

 if isempty(this.Timestamp)
 if isfield(sourceParams, 'Timestamps')

 Create Class for Loading Custom Ground Truth Data Sources

2-49

 setTimestamps(this, sourceParams.Timestamps);
 else
 this.Timestamp = {seconds(0:1:numel(this.Pcds.Files)-1)'};
 end
 else
 if ~iscell(this.Timestamp)
 this.Timestamp = {this.Timestamp};
 end
 end

 import vision.internal.labeler.validation.*
 checkPointCloudSequenceAndTimestampsAgreement(this.Pcds,this.Timestamp{1});

 % Populate signal names and types
 [~, folderName, ~] = fileparts(sourceName);

 this.SignalName = makeValidName(this, string(folderName), "pointcloudSequence_");
 this.SignalType = vision.labeler.loading.SignalType.PointCloud;

 this.SourceName = sourceName;
 this.SourceParams = sourceParams;
 end

Method to Read Frames
The last required method that you must define is the readFrame method. This method reads a frame
from a signal stored in the data source. The app calls this method each time you navigate to a new
frame. The index to a particular timestamp in the Timestamp property is passed to this method.

This code shows the readFrame method for the
vision.labeler.loading.PointCloudSequenceSource class. The method reads frames from
the point cloud sequence by using the pcread function.

 function frame = readFrame(this, signalName, index)
 if ~strcmpi(signalName, this.SignalName)
 frame = [];
 else
 frame = pcread(this.Pcds.Files{index});
 end
 end

You can also define any additional private properties that are specific to loading your data source.
The source-specific methods for the vision.labeler.loading.PointCloudSequenceSource
class are not shown in this example but you can view them in the class file.

Use Predefined Data Source Classes
This example showed how to use the vision.labeler.loading.PointCloudSequenceSource
class to help you create your own custom class. This table shows the complete list of data source
classes that you can use as starting points for your own class.

2 Ground Truth Labeling and Verification

2-50

Class Data Source Loaded by Class Command to View Class
Source Code

vision.labeler.loading.V
ideoSource

Video file edit vision.labeler.loading.VideoSource

vision.labeler.loading.I
mageSequenceSource

Image sequence folder edit vision.labeler.loading.ImageSequenceSource

vision.labeler.loading.V
elodyneLidarSource

Velodyne packet capture (PCAP)
file

edit vision.labeler.loading.VelodyneLidarSource

vision.labeler.loading.R
osbagSource

Rosbag file edit vision.labeler.loading.RosbagSource

vision.labeler.loading.P
ointCloudSequenceSource

Point cloud sequence folder edit vision.labeler.loading.PointCloudSequenceSource

vision.labeler.loading.C
ustomImageSource

Custom image format edit vision.labeler.loading.CustomImageSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.MultiSignalSource

Objects
groundTruthMultisignal

 Create Class for Loading Custom Ground Truth Data Sources

2-51

Tracking and Sensor Fusion

• “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2
• “Linear Kalman Filters” on page 3-11
• “Extended Kalman Filters” on page 3-16

3

Visualize Sensor Data and Tracks in Bird's-Eye Scope
The Bird's-Eye Scope visualizes signals from your Simulink model that represent aspects of a
driving scenario. Using the scope, you can analyze:

• Sensor coverages of vision, radar, and lidar sensors
• Sensor detections of actors and lane boundaries
• Tracks of moving objects in the scenario

This example shows you how to display these signals on the scope and analyze the signals during
simulation.

Open Model and Scope
Open a model containing signals for sensor detections and tracks. This model is used in the “Sensor
Fusion Using Synthetic Radar and Vision Data in Simulink” example. Also add the file folder of the
model to the MATLAB search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))
open_system('SyntheticDataSimulinkExample')

Open the scope from the Simulink toolstrip. Under Review Results, click Bird's-Eye Scope.

Find Signals
When you first open the Bird's-Eye Scope, the scope canvas is blank and displays no signals. To find
signals from the opened model that the scope can display, on the scope toolstrip, click Find Signals.
The scope updates the block diagram and automatically finds the signals in the model.

3 Tracking and Sensor Fusion

3-2

The left pane lists all the signals that the scope found. These signals are grouped based on their
sources within the model.

Signal Group Description Signal Sources
Ground Truth Road boundaries and lane

markings in the scenario

You cannot modify this group or
any of its signals.

To inspect large road networks,
use the World Coordinates
View window. See “Vehicle and
World Coordinate Views”.

• Scenario Reader block

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-3

Signal Group Description Signal Sources
Actors Actors in the scenario, including

the ego vehicle

You cannot modify this group or
any of its signals or subgroups.

To view actors that are located
away from the ego vehicle, use
the World Coordinates View
window. See “Vehicle and World
Coordinate Views”.

• Scenario Reader block
• Vision Detection Generator

and Radar Detection
Generator blocks (for actor
profile information only, such
as the length, width, and
height of actors)

• If actor profile
information is not set or
is inconsistent between
blocks, the scope sets the
actor profiles to the
default actor profile
values for each block.

• The profile of the ego
vehicle is always set to
the default profile for
each block.

Sensor Coverage Coverage areas of vision, radar,
and lidar sensors, sorted into
Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Sensor Coverage group. You
can also add subgroups and
move signals between
subgroups. If you delete a
subgroup, its signals move to
the top-level Sensor Coverage
group.

• Vision Detection Generator
block

• Radar Detection Generator
block

• Simulation 3D Probabilistic
Radar block

• Simulation 3D Lidar block

3 Tracking and Sensor Fusion

3-4

Signal Group Description Signal Sources
Detections Detections obtained from vision,

radar, and lidar sensors, sorted
into Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Detections group. You can also
add subgroups and move signals
between subgroups. If you
delete a subgroup, its signals
move to the top-level
Detections group.

• Vision Detection Generator
block

• Radar Detection Generator
block

• Simulation 3D Probabilistic
Radar block

• Simulation 3D Lidar block

Tracks Tracks of objects in the scenario

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Tracks group. You can also add
subgroups to this group and
move signals into them. If you
delete a subgroup, its signals
move to the top-level Tracks
group.

• Multi-Object Tracker block

Other Applicable Signals Signals that the scope cannot
automatically group, such as
ones that combine information
from multiple sensors

You can modify signals in this
group but you cannot add
subgroups.

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as the
Detection Concatenation
block)

• Nonvirtual Simulink buses
containing position and
velocity information for
detections and tracks

• Vehicle To World and World
To Vehicle blocks

• Any blocks that create buses
containing actor poses

For details on the actor pose
information required when
creating these buses, see the
Actors output port of the
Scenario Reader block.

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-5

Before simulation but after clicking Find Signals, the scope canvas displays all Ground Truth
signals except for non-ego actors and all Sensor Coverage signals. The non-ego actors and the
signals under Detections and Tracks do not display until you simulate the model. The signals in
Other Applicable Signals do not display during simulation. If you want the scope to display specific
signals, move them into the appropriate group before simulation. If an appropriate group does not
exist, create one.

Run Simulation
Simulate the model from within the Bird's-Eye Scope by clicking Run. The scope canvas displays
the detections and tracks. To display the legend, on the scope toolstrip, click Legend.

3 Tracking and Sensor Fusion

3-6

During simulation, you can perform these actions:

• Inspect detections, tracks, sensor coverage areas, and ego vehicle behavior. The default view
displays the simulation in vehicle coordinates and is centered on the ego vehicle. To view the
wider area around the ego vehicle, or to view other parts of the scenario, on the scope toolstrip,
click World Coordinates. The World Coordinates View window displays the entire scenario,
with the ego vehicle circled. This circle is not a sensor coverage area. To return to the default
display of either window, move your pointer over the window, and in the upper-right corner, click

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-7

the home button that appears. For more details on these views, see “Vehicle and World
Coordinate Views”.

• Update signal properties. To access the properties of a signal, first select the signal from the left
pane. Then, on the scope toolstrip, click Properties. Using these properties, you can, for example,
show or hide sensor coverage areas or detections. In addition, to highlight certain sensor
coverage areas, you can change their color or transparency.

• Update Bird's-Eye Scope settings, such as changing the axes limits of the Vehicle Coordinates
View window or changing the display of signal names. On the scope toolstrip, click Settings. You
cannot change the Track position selector and Track velocity selector settings during
simulation. For more details, see the “Settings” section of the Bird's-Eye Scope reference page.

After simulation, you can hide certain detections or tracks for the next simulation. In the left pane,
under Detections or Tracks, right-click the signal you want to hide. Then, select Move to Other
Applicable to move that signal into the Other Applicable Signals group. To hide sensor coverage
areas, select the corresponding signal in the left pane, and on the Properties tab, clear the Show
Sensor Coverage parameter. You cannot hide Ground Truth signals during simulation.

Organize Signal Groups (Optional)
To further organize the signals, you can rename signal groups or move signals into new groups. For
example, you can rename the Vision and Radar subgroups to Front of Car and Back of Car. Then
you can drag the signals as needed to move them into the appropriate groups based on the new
group names. When you drag a signal to a new group, the color of the signal changes to match the
color assigned to its group.

You cannot rename or delete the top-level groups in the left pane, but you can rename or delete any
subgroup. If you delete a subgroup, its signals move to the top-level group.

Update Model and Rerun Simulation
After you run the simulation, modify the model and inspect how the changes affect the visualization
on the Bird's-Eye Scope. For example, in the Sensor Simulation subsystem of the model, open the
two Vision Detection Generator blocks. These blocks have sensor indices of 1 and 2, respectively. On
the Measurements tab of each block, reduce the Maximum detection range (m) parameter to 50.
To see how the sensor coverage changes, rerun the simulation.

When you modify block parameters, you can rerun the simulation without having to find signals
again. If you add or remove blocks, ports, or signal lines, then you must click Find Signals again
before rerunning the simulation.

Save and Close Model
Save and close the model. The settings for the Bird's-Eye Scope are also saved.

If you reopen the model and the Bird's-Eye Scope, the scope canvas is initially blank.

Click Find Signals to find the signals again and view the saved signal properties. For example, if you
reduced the detection range in the previous step, the scope canvas displays this reduced range.

3 Tracking and Sensor Fusion

3-8

When you are done simulating the model, remove the model file folder from the MATLAB search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Multi Object Tracker | Radar Detection Generator | Scenario Reader |
Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Vision Detection Generator

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-9

Related Examples
• “Visualize 3D Simulation Sensor Coverages and Detections” on page 6-35
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Lateral Control Tutorial”
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100

3 Tracking and Sensor Fusion

3-10

Linear Kalman Filters
In this section...
“State Equations” on page 3-11
“Measurement Models” on page 3-12
“Linear Kalman Filter Equations” on page 3-13
“Filter Loop” on page 3-13
“Constant Velocity Model” on page 3-14
“Constant Acceleration Model” on page 3-15

When you use a Kalman filter to track objects, you use a sequence of detections or measurements to
construct a model of the object motion. Object motion is defined by the evolution of the state of the
object. The Kalman filter is an optimal, recursive algorithm for estimating the track of an object. The
filter is recursive because it updates the current state using the previous state, using measurements
that may have been made in the interval. A Kalman filter incorporates these new measurements to
keep the state estimate as accurate as possible. The filter is optimal because it minimizes the mean-
square error of the state. You can use the filter to predict future states or estimate the current state
or past state.

State Equations
For most types of objects tracked in Automated Driving Toolbox, the state vector consists of one-, two-
or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant acceleration and
convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this type of motion.
Sometimes the model includes process noise to reflect uncertainty in the motion model. In this case,
Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise are known.
It is assumed to be zero-mean Gaussian white noise.

 Linear Kalman Filters

3-11

You can extend this type of equation to more than one dimension. In two dimensions, the equation has
the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent x- and y-
motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the length of the
time interval. In discrete form, for a sample interval of T, the state-representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier discrete time, k. If
you include noise, the equation becomes more complicated, because the integration of noise is not
straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into account
any known forces acting on the object. Both of these matrices are given. The last term represents
noise-like random perturbations of the dynamic model. The noise is assumed to be zero-mean
Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential equations.
Discrete-time systems with input noise are described by linear stochastic differential equations. A
state-space representation is a mathematical model of a physical system where the inputs, outputs,
and state variables are related by first-order coupled equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the state vector
but are not always the same as the state vector. For instance, in a radar system, the measurements
can be spherical coordinates such as range, azimuth, and elevation, while the state vector is the
Cartesian position and velocity. For the linear Kalman filter, the measurements are always linear
functions of the state vector, ruling out spherical coordinates. To use spherical coordinates, use the
extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to the current
state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also zero-mean
white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

3 Tracking and Sensor Fusion

3-12

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each instance, the
process and measurement noises are not known. Only the noise statistics are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and also how the
uncertainties in the state components evolve.

Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter performs these
steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at the k+1 step
propagated from step k. This estimate is often called the a priori estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k
2 Use the difference between the actual measurement and predicted measurement to correct the

state at the updated time. The correction requires computing the Kalman gain. To do this, first
compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a linear

combination of the predicted state and the measurement. The estimate after correction uses the
subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori estimate of the
state because it is derived after the measurement is included.

Correct the state covariance matrix

 Linear Kalman Filters

3-13

Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a correction
to the measurement but is a best estimate of what the measurement would be based upon the
best estimate of the state. Comparing this to the actual measurement gives you an indication of
the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model. Alternatively, you
can specify the transition matrix for linear motion. The state update at the next time step is a linear
function of the state at the present time. In this filter, the measurements are also linear functions of
the state described by a measurement matrix. For an object moving in 3-D space, the state is
described by position and velocity in the x-, y-, and z-coordinates. The state transition model for the
constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

3 Tracking and Sensor Fusion

3-14

The measurement model is a linear function of the state vector. The simplest case is one where the
measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model. Alternatively,
you can specify the transition matrix for constant-acceleration linear motion. The transition model for
linear acceleration is

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF

 Linear Kalman Filters

3-15

Extended Kalman Filters
In this section...
“State Update Model” on page 3-16
“Measurement Model” on page 3-16
“Extended Kalman Filter Loop” on page 3-17
“Predefined Extended Kalman Filter Functions” on page 3-18

Use an extended Kalman filter when object motion follows a nonlinear state equation or when the
measurements are nonlinear functions of the state. A simple example is when the state or
measurements of the object are calculated in spherical coordinates, such as azimuth, elevation, and
range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state and
covariance matrix remain linear functions of the previous state and covariance matrix. However, the
state transition matrix in the linear Kalman filter is replaced by the Jacobian of the state equations.
The Jacobian matrix is not constant but can depend on the state itself and time. To use the extended
Kalman filter, you must specify both a state transition function and the Jacobian of the state transition
function.

Assume there is a closed-form expression for the predicted state as a function of the previous state,
controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update equation:

xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state and the
measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

3 Tracking and Sensor Fusion

3-16

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended kalman filter loop is almost identical to the linear Kalman filter loop except that:

• The exact nonlinear state update and measurement functions are used whenever possible and the
state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.

 Extended Kalman Filters

3-17

Predefined Extended Kalman Filter Functions
Automated Driving Toolbox provides predefined state update and measurement functions to use in
the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state update

model
constveljac Constant-velocity state update

Jacobian
cvmeas Constant-velocity measurement

model
cvmeasjac Constant-velocity measurement

Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state update

model
constturnjac Constant turn-rate state update

Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate measurement

Jacobian

See Also
Objects
trackingEKF

3 Tracking and Sensor Fusion

3-18

Planning, Mapping, and Control

• “Display Data on OpenStreetMap Basemap” on page 4-2
• “Access HERE HD Live Map Data” on page 4-7
• “Enter HERE HD Live Map Credentials” on page 4-12
• “Create Configuration for HERE HD Live Map Reader” on page 4-14
• “Create HERE HD Live Map Reader” on page 4-18
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-22
• “HERE HD Live Map Layers” on page 4-30
• “Rotations, Orientations, and Quaternions for Automated Driving” on page 4-35
• “Control Vehicle Velocity” on page 4-42
• “Velocity Profile of Straight Path” on page 4-44
• “Velocity Profile of Path with Curve and Direction Change” on page 4-48

4

Display Data on OpenStreetMap Basemap
This example shows how to display a driving route and vehicle positions on an OpenStreetMap®
basemap.

Add the OpenStreetMap basemap to the list of basemaps available for use with the geoplayer
object. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the driving route and
set the zoom level to 12.

zoomLevel = 12;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);

Display the full route.

4 Planning, Mapping, and Control

4-2

plotRoute(player,data.latitude,data.longitude);

By default, the geographic player uses the World Street Map basemap ('streets') provided by
Esri®. Update the geographic player to use the added OpenStreetMap basemap instead.

player.Basemap = 'openstreetmap';

 Display Data on OpenStreetMap Basemap

4-3

Display the route again.

plotRoute(player,data.latitude,data.longitude);

4 Planning, Mapping, and Control

4-4

Display the positions of the vehicle in a sequence.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i))
end

 Display Data on OpenStreetMap Basemap

4-5

See Also
addCustomBasemap | geoplayer | plotPosition | plotRoute | removeCustomBasemap

4 Planning, Mapping, and Control

4-6

Access HERE HD Live Map Data
HERE HD Live Map1 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. The data is composed of
tiled map layers containing information such as the topology and geometry of roads and lanes, road-
level attributes, and lane-level attributes. This data is suitable for a variety of ADAS applications,
including localization, scenario generation, navigation, and path planning.

Using Automated Driving Toolbox functions and objects, you can create a HERE HDLM reader, read
map data from the HERE HDLM web service, and then visualize the data from certain layers.

Step 1: Enter Credentials
Before you can use the HERE HDLM web service, you must enter the credentials that you obtained
from your agreement with HERE Technologies. To set up your credentials, use the
hereHDLMCredentials function.

hereHDLMCredentials setup

For more details, see “Enter HERE HD Live Map Credentials” on page 4-12.

Step 2: Create Reader Configuration
Optionally, to speed up performance, create a hereHDLMConfiguration object that configures the
reader to search for map data in only a specific catalog. These catalogs correspond to various
geographic regions. For example, create a configuration for the North America region.

config = hereHDLMConfiguration('North America');

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

 Access HERE HD Live Map Data

4-7

https://www.here.com

For more details, see “Create Configuration for HERE HD Live Map Reader” on page 4-14.

Step 3: Create Reader
Create a hereHDLMReader object and optionally specify the configuration. The reader enables you to
read HERE HDLM map data, which is stored is a series of layers, for selected map tiles. You can
select map tiles by map tile ID or by specifying the coordinates of a driving route. For example, create
a reader that reads tiled map layer data for a driving route in North America.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
reader = hereHDLMReader(route.latitude,route.longitude,'Configuration',config);

4 Planning, Mapping, and Control

4-8

For more details, see “Create HERE HD Live Map Reader” on page 4-18.

Step 4: Read and Visualize Data
Use the read function to read data for the selected map tiles. The map data is returned as a series of
layer objects. To plot map data for a selected layer, use the plot function. For example, read and plot
the topology geometry layer for the selected map tiles, and overlay the driving route on the plot.

topology = read(reader,'TopologyGeometry');

topology =

 2×1 TopologyGeometry array with properties:

 Data:
 HereTileId
 IntersectingLinkRefs
 LinksStartingInTile
 NodesInTile
 TileCenterHere2dCoordinate

 Access HERE HD Live Map Data

4-9

 Metadata:
 Catalog
 CatalogVersion

plot(topology)
hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off

For more details, see “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-22.

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader | plot | read

More About
• “HERE HD Live Map Layers” on page 4-30
• “Use HERE HD Live Map Data to Verify Lane Configurations”
• “Import HERE HD Live Map Roads into Driving Scenario” on page 5-72

4 Planning, Mapping, and Control

4-10

External Websites
• HD Live Map Data Specification

 Access HERE HD Live Map Data

4-11

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Enter HERE HD Live Map Credentials
To access the HERE HD Live Map2 (HERE HDLM) web service, valid HERE credentials are required.
You can obtain these credentials by entering into a separate agreement with HERE Technologies. The
first time that you use a HERE HDLM function or object in a MATLAB session, a dialog box prompts
you to enter these credentials.

Enter a valid App ID and App Code, and click OK. The credentials are now saved for the rest of your
MATLAB session on your machine. To save your credentials for future MATLAB sessions on your
machine, in the dialog box, select Save my credentials between MATLAB sessions. These
credentials remain saved until you delete them.

To change your credentials, or to set up your credentials before using a HERE HDLM function or
object such as hereHDLMReader or hereHDLMConfiguration, use the hereHDLMCredentials
function.

hereHDLMCredentials setup

You can also use this function to later delete your saved credentials.

hereHDLMCredentials delete

After you enter your credentials, you can then configure your HERE HDLM reader to search for map
data in only a specific geographic region. See “Create Configuration for HERE HD Live Map Reader”
on page 4-14. Alternatively, you can create the reader without specifying a configuration. See
“Create HERE HD Live Map Reader” on page 4-18.

2. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

4 Planning, Mapping, and Control

4-12

https://www.here.com

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader

More About
• “Create Configuration for HERE HD Live Map Reader” on page 4-14
• “Create HERE HD Live Map Reader” on page 4-18

 Enter HERE HD Live Map Credentials

4-13

Create Configuration for HERE HD Live Map Reader
In the HERE HD Live Map3 (HERE HDLM) web service, map data is stored in a set of databases
called catalogs. Each catalog corresponds to a different geographic region (North America, India,
Western Europe, and so on). Previous versions of each catalog are also available from the service.

By creating a hereHDLMConfiguration object, you can configure a HERE HDLM reader to search
for map data from only a specific catalog. These configurations speed up performance of the reader,
because the reader does not search unnecessary catalogs for map data. You can also configure a
reader to search from only a specific version of a catalog.

Configuring a HERE HDLM reader using a hereHDLMConfiguration object is optional. If you do
not specify a configuration, by default, the reader searches for map tiles across all catalogs and
returns map data from the latest version of that catalog.

Create Configuration for Specific Catalog
Configuring a HERE HDLM reader to search only a specific catalog can speed up performance.

Consider a driving route located in North America.

3. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

4 Planning, Mapping, and Control

4-14

https://www.here.com

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

Suppose you want to read map data for that route from the HERE HDLM service. You can create a
hereHDLMConfiguration object that configures a HERE HDLM reader to search for that map data
within only the North America catalog.

config = hereHDLMConfiguration('North America');

 Create Configuration for HERE HD Live Map Reader

4-15

If you do not specify such a configuration, by default, the reader searches all available catalogs for
this map data.

To configure a HERE HDLM reader for a specific catalog, you can specify either the region name or
catalog name. This table shows the HERE HDLM region names and corresponding production catalog
names.

Region Catalog
'Asia Pacific' 'here-hdmap-ext-apac-1'
'Eastern Europe' 'here-hdmap-ext-eeu-1'
'India' 'here-hdmap-ext-rn-1'
'Middle East And Africa' 'here-hdmap-ext-mea-1'
'North America' 'here-hdmap-ext-na-1'
'Oceania' 'here-hdmap-ext-au-1'
'South America' 'here-hdmap-ext-sam-1'
'Western Europe' 'here-hdmap-ext-weu-1'

Create Configuration for Specific Version
The HERE HDLM service also contains map data for previous versions of each catalog. You can
configure a reader to access map data from a specific catalog version.

4 Planning, Mapping, and Control

4-16

For example, create a configuration object for the previous version of the Western Europe catalog.

configLatest = hereHDLMConfiguration('Western Europe');
previousVersion = configLatest.CatalogVersion - 1;
configPrevious = hereHDLMConfiguration('WesternEurope',previousVersion);

The HERE HDLM service determines the availability of previous versions of the catalog. If you specify
a version of the catalog that is not available, then the hereHDLMConfiguration object returns an
error.

Configure Reader
To configure a HERE HDLM reader, specify the configuration object when you create the
hereHDLMReader object. This configuration is stored in the Configuration property of the reader.

For example, create a HERE HDLM reader using the configuration and latitude-longitude coordinates
that you created in the “Create Configuration for Specific Catalog” on page 4-14 section. Your catalog
version might differ from the one shown here. This reader is configured for the latest catalog version,
but the HERE HDLM service is continually updated and frequently produces new map versions.

reader = hereHDLMReader(lat,lon,'Configuration',config);
reader.Configuration

 hereHDLMConfiguration with properties:

 Catalog: 'here-hdmap-ext-na-1'
 CatalogVersion: 2054

For details about creating HERE HDLM readers, see “Create HERE HD Live Map Reader” on page 4-
18.

See Also
hereHDLMConfiguration | hereHDLMReader

More About
• “Create HERE HD Live Map Reader” on page 4-18

 Create Configuration for HERE HD Live Map Reader

4-17

Create HERE HD Live Map Reader
A hereHDLMReader object reads HERE HD Live Map4 (HERE HDLM) data from a selection of map
tiles. By default, these map tiles are set to a zoom level of 14, which corresponds to a rectangular
area of about 5–10 square kilometers.

You select the map tiles from which to read data when you create a hereHDLMReader object. You can
specify the map tile IDs directly, or you can specify a driving route and read data from the map tiles
of that route.

Create Reader from Specified Driving Route
If you have a driving route stored as a vector of latitude-longitude coordinates, you can use these
coordinates to select map tiles from which to read data.

Load the latitude-longitude coordinates for a driving route in North America. For reference, display
the route on a geographic axes.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

4. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

4 Planning, Mapping, and Control

4-18

https://www.here.com

Create a hereHDLMConfiguration object for reading data from only the North America catalog.
For more details about configuring HERE HDLM readers, see “Create Configuration for HERE HD
Live Map Reader” on page 4-14. If you have not previously set up HERE HDLM credentials, a dialog
box prompts you to enter them.

config = hereHDLMConfiguration('North America');

Create a hereHDLMReader object using the specified driving route and configuration.

reader = hereHDLMReader(lat,lon,'Configuration',config);

This HERE HDLM reader enables you to read map data for the tiles that the driving route is on. The
map data is stored in a set of layers containing detailed information about various aspects of the map.
The reader supports reading data from the map layers for the Road Centerline Model and HD Lane
Model. For more details on the layers in these models, see “HERE HD Live Map Layers” on page 4-
30.

 Create HERE HD Live Map Reader

4-19

If you call the read function with the HERE HDLM reader, you can read the map tile data for a
specific layer. If the layer supports visualization, you can also plot the layer. For more details, see
“Read and Visualize Data Using HERE HD Live Map Reader” on page 4-22.

Create Reader from Specified Map Tile IDs
If you know the IDs of the map tiles from which you want to read data, when you create a
hereHDLMReader object, you can specify the map tile IDs directly. Specify the map tile IDs as an
array of unsigned 32-bit integers.

Create a hereHDLMReader object using the map tile IDs and configuration from the previous section.

tileIds = uint32([321884279 321884450]);
reader = hereHDLMReader(tileIds);

This reader is equivalent to the reader created in the previous section. The only difference between
these two readers is the method for selecting the map tiles from which to read data.

To learn more about reading and plotting data from map tiles, see “Read and Visualize Data Using
HERE HD Live Map Reader” on page 4-22.

4 Planning, Mapping, and Control

4-20

See Also
hereHDLMConfiguration | hereHDLMReader | read

More About
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 4-22
• “HERE HD Live Map Layers” on page 4-30

 Create HERE HD Live Map Reader

4-21

Read and Visualize Data Using HERE HD Live Map Reader
You can read map tile data from the HERE HD Live Map5 (HERE HDLM) web service by using a
hereHDLMReader object and the read function. This data is composed of a series of map layer
objects. The diagram shows the layers available for map tiles corresponding to a driving route in
North America.

You can use this map layer data for a variety of automated driving applications. You can also visualize
certain layers by using the plot function.

Create Reader
To read map data using the read function, you must specify a hereHDLMReader object as an input
argument. This object specifies the map tiles from which you want to read data.

Create a hereHDLMReader object that can read data from the map tiles of a driving route in North
America. Configure the reader to read data from only the North America catalog by specifying a

5. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

4 Planning, Mapping, and Control

4-22

https://www.here.com

hereHDLMConfiguration object for the Configuration property of the reader. If you have not
previously entered HERE HDLM credentials, a dialog box prompts you to enter them. For reference,
display the driving route on a geographic axes.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
config = hereHDLMConfiguration('North America');
reader = hereHDLMReader(lat,lon,'Configuration',config);

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

For more details about configuring a HERE HDLM reader, see “Create Configuration for HERE HD
Live Map Reader” on page 4-14. For more details about creating a reader, see “Create HERE HD Live
Map Reader” on page 4-18.

Read Map Layer Data
To read map layer data from the HERE HDLM web service, call the read function with the reader you
created in the previous section and the name of the map layer you want to read. For example, read
data from the layer containing the topology geometry of the road. The data is returned as an array of
map layer objects.

topology = read(reader,'TopologyGeometry')

 Read and Visualize Data Using HERE HD Live Map Reader

4-23

topology =

 2×1 TopologyGeometry array with properties:

 Data:
 HereTileId
 IntersectingLinkRefs
 LinksStartingInTile
 NodesInTile
 TileCenterHere2dCoordinate

 Metadata:
 Catalog
 CatalogVersion

Each map layer object corresponds to a map tiles that you selected using the input hereHDLMReader
object. The IDs of these map tiles are stored in the TileIds property of the HERE HDLM reader.

Inspect the properties of the map layer object for the first map tile. Your catalog version might differ
from the one shown here.

topology(1)

ans =

 TopologyGeometry with properties:

 Data:
 HereTileId: 321884279
 IntersectingLinkRefs: [38×1 struct]
 LinksStartingInTile: [490×1 struct]
 NodesInTile: [336×1 struct]
 TileCenterHere2dCoordinate: [42.3083 -71.3782]

 Metadata:
 Catalog: 'here-hdmap-ext-na-1'
 CatalogVersion: 2066

The properties of the TopologyGeometry layer object correspond to valid HERE HDLM fields for
that layer. In these layer objects, the names of the layer fields are modified to fit the MATLAB naming
convention for object properties. For each layer field name, the first letter and first letter after each
underscore are capitalized and the underscores are removed. This table shows sample name changes.

HERE HDLM Layer Fields MATLAB Layer Object Property
here_tile_id HereTileId
tile_center_here_2d_coordinate TileCenterHere2dCoordinate
nodes_in_tile NodesInTile

The layer objects are MATLAB structures whose properties correspond to structure fields. To access
data from these fields, use dot notation. For example, this code selects the NodeId subfield from the
NodeAttribution field of a layer:

layerData.NodeAttribution.NodeId

This table summarizes the valid types of layer objects and their top-level data fields. The available
layers are for the

4 Planning, Mapping, and Control

4-24

Road Centerline Model and HD Lane Model. For an overview of HERE HDLM layers and the models
that they belong to, see “HERE HD Live Map Layers” on page 4-30. For a full description of the
fields, see HD Live Map Data Specification on the HERE Technologies website.

Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

AdasAttributes Precision geometry
measurements, such as
slope, elevation, and
curvature of roads. Use
this data to develop
advanced driver
assistance systems
(ADAS).

• HereTileId
• LinkAttribution
• NodeAttribution

Not available

ExternalReferenceA
ttributes

References to external
map links, nodes, and
topologies for other
HERE maps.

• HereTileId
• LinkAttribution
• NodeAttribution

Not available

LaneAttributes Lane-level attributes,
such as direction of
travel and lane type.

• HereTileId
• LaneGroupAttribu

tion

Not available

LaneGeometryPolyli
ne

3-D lane geometry
composed of a set of 3-
D points joined into
polylines.

• HereTileId
• TileCenterHere3d

Coordinate
• LaneGroupGeometr

ies

Available — Use the
plot function.

LaneRoadReferences Road and lane group
references and range
information. Use this
data to translate
positions between the
Road Centerline Model
and the HD Lane Model.

• HereTileId
• LaneGroupLinkRef

erences
• LinkLaneGroupRef

erences

Not available

 Read and Visualize Data Using HERE HD Live Map Reader

4-25

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

LaneTopology Topologies of the HD
Lane model, including
lane group, lane group
connector, lane, and
lane connector
topologies. This layer
also contains the
simplified 2-D boundary
geometry of the lane
model for determining
map tile affinity and
overflow.

• HereTileId
• TileCenterHere2d

Coordinate
• LaneGroupsStarti

ngInTile
• LaneGroupConnect

orsInTile
• IntersectingLane

GroupRefs

Available — Use the
plot function.

RoutingAttributes Road attributes related
to navigation and
conditions. These
attributes are mapped
parametrically to the 2-
D polyline geometry in
the topology layer.

• HereTileId
• LinkAttribution
• NodeAttribution
• StrandAttributio

n
• AttributionGroup

List

Not available

RoutingLaneAttribu
tes

Core navigation lane
attributes and
conditions, such as the
number of lanes in a
road. These values are
mapped parametrically
to 2-D polylines along
the road links.

• HereTileId
• LinkAttribution

Not available

SpeedAttributes Speed-related road
attributes, such as
speed limits. These
attributes are mapped
to the 2-D polyline
geometry of the
topology layer.

• HereTileId
• LinkAttribution

Not available

4 Planning, Mapping, and Control

4-26

Layer Object Description Top-Level Data Fields
(Layer Object
Properties)

Plot Support

TopologyGeometry Topology and 2-D line
geometry of the road.
This layer also contains
definitions of the nodes
and links in the map
tile.

• HereTileId
• TileCenterHere2d

Coordinate
• NodesInTile
• LinksStartingInT

ile
• IntersectingLink

Refs

Available — Use the
plot function.

Visualize Map Layer Data
You can visualize the data of certain map layers. To visualize these layers, use the plot function. Plot
the topology geometry of the returned map layers. The plot shows the boundaries, nodes
(intersections and dead-ends), and links (streets) within the map tiles. If a link extends past the tile
boundary, the layer data includes that link.

plot(topology)

 Read and Visualize Data Using HERE HD Live Map Reader

4-27

Map layer plots are returned on a geographic axes. To customize map displays, you can use the
properties of the geographic axes. For more details, see GeographicAxes Properties. Overlay the
driving route on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off

4 Planning, Mapping, and Control

4-28

See Also
hereHDLMReader | plot | read

More About
• “HERE HD Live Map Layers” on page 4-30
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification

 Read and Visualize Data Using HERE HD Live Map Reader

4-29

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

HERE HD Live Map Layers
HERE HD Live Map6 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. The data is composed of
tiled map layers containing information such as the topology and geometry of roads and lanes, and
road-level and lane-level attributes. The data is stored in a series of map catalogs that correspond to
geographic regions.

To access layer data for a selection of map tiles, use a hereHDLMReader object. For information on
the hereHDLMReader workflow, see “Access HERE HD Live Map Data” on page 4-7.

The layers are grouped into these models:

• “Road Centerline Model” on page 4-31 — Provides road topology, shape geometry, and other
road-level attributes

• “HD Lane Model” on page 4-33 — Contains lane topology, highly accurate geometry, and lane-
level attributes

• “HD Localization Model” on page 4-34 — Includes multiple features, such as road signs, to
support localization strategies

hereHDLMReader objects support reading layers from the Road Centerline Model and HD Lane
Model only.

6. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

4 Planning, Mapping, and Control

4-30

https://www.here.com

Road Centerline Model
The Road Centerline Model represents the topology of the road network. It is composed of links
corresponding to streets and nodes corresponding to intersections and dead-ends. For each map tile,
the layers within this model contain information about these links and nodes, such as the 2-D line
geometry of the road network, speed attributes, and routing attributes.

The figure shows a plot for the TopologyGeometry layer, which visualizes the 2-D line geometry of
the nodes and links within a map tile.

 HERE HD Live Map Layers

4-31

This table shows the map layers of the Road Centerline Model that a hereHDLMReader object can
read. The available layers vary by geographic region, so not all layers are available for every map tile.
When you call the read function on a hereHDLMReader object and specify a map layer name, the
function returns the layer data as an object. For more details about these layer objects, see the read
function reference page.

Road Centerline Model Layers Description
TopologyGeometry Topology and 2-D line geometry of the road. This

layer also contains definitions of the links
(streets) and nodes (intersections and dead-ends)
in the map tile.

RoutingAttributes Road attributes related to navigation and
conditions. These attributes are mapped
parametrically to the 2-D polyline geometry in the
topology layer.

RoutingLaneAttributes Core navigation lane attributes and conditions,
such as the number of lanes in a road. These
values are mapped parametrically to 2-D
polylines along the road links.

SpeedAttributes Speed-related road attributes, such as speed
limits. These attributes are mapped to the 2-D
polyline geometry of the topology layer.

AdasAttributes Precision geometry measurements such as slope,
elevation, and curvature of roads. Use this data to
develop advanced driver assistance systems
(ADAS).

ExternalReferenceAttributes References to external links, nodes, and
topologies for other HERE maps.

4 Planning, Mapping, and Control

4-32

Road Centerline Model Layers Description
LaneRoadReferences (also part of HD Lane
Model)

Road and lane group references and range
information. Use this data to translate positions
between the Road Centerline Model and the HD
Lane Model.

HD Lane Model
The HD Lane Model represents the topology and geometry of lane groups, which are the lanes within
a link (street). In this model, the shapes of lanes are modeled with 2-D and 3-D positions and support
centimeter-level accuracy. This model provides several lane attributes, including lane type, direction
of travel, and lane boundary color and style.

The figure shows a plot for the LaneTopology layer object, which visualizes the 2-D line geometry of
lane groups and their connectors within a map tile.

This table shows the map layers of the HD Lane Model that a hereHDLMReader object can read. The
available layers vary by geographic region, so not all layers are available for every map tile. When
you call the read function on a hereHDLMReader object and specify a map layer name, the function
returns the layer data as an object. For more details about these layer objects, see the read function
reference page.

HD Lane Model Layers Description
LaneTopology Topologies of the HD Lane model, including lane

group, lane group connector, lane, and lane
connector topologies. This layer also contains the
simplified 2-D boundary geometry of the lane
model for determining map tile affinity and
overflow.

LaneGeometryPolyline 3-D lane geometry composed of a set of 3-D
points joined into polylines.

 HERE HD Live Map Layers

4-33

HD Lane Model Layers Description
LaneAttributes Lane-level attributes, such as direction of travel

and lane type.
LaneRoadReferences (also part of Road
Centerline Model)

Road and lane group references and range
information. Used to translate positions between
the Road Centerline Model and the HD Lane
Model.

HD Localization Model
The HD Localization Model contains data, such as traffic signs or other road objects, that helps
autonomous vehicles accurately locate where they are within a road network. hereHDLMReader
objects do not support reading layers from this model.

See Also
hereHDLMReader | plot | read

More About
• “Access HERE HD Live Map Data” on page 4-7
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification

4 Planning, Mapping, and Control

4-34

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Rotations, Orientations, and Quaternions for Automated
Driving

A quaternion is a four-part hypercomplex number used to describe three-dimensional rotations and
orientations. Quaternions have applications in many fields, including aerospace, computer graphics,
and virtual reality. In automated driving, sensors such as inertial measurement units (IMUs) report
orientation readings as quaternions. To use this data for localization, you can capture it using a
quaternion object, perform mathematical operations on it, or convert it to other rotation formats,
such as Euler angles and rotation matrices.

You can use quaternions to perform 3-D point and frame rotations.

• With point rotations, you rotate points in a static frame of reference.
• With frame rotations, you rotate the frame of reference around a static point to convert the frame

into the coordinate system relative to the point.

You can define these rotations by using an axis of rotation and an angle of rotation about that axis.
Quaternions encapsulate the axis and angle of rotation and have an algebra for manipulating these
rotations. The quaternion object uses the "right-hand rule" convention to define rotations. That is,
positive rotations are clockwise around the axis of rotation when viewed from the origin.

Quaternion Format
A quaternion number is represented in this form:

a + bi + c j + dk

a, b, c, and d are real numbers. These coefficients are known as the parts of the quaternion.

i, j, and k are the complex elements of a quaternion. These elements satisfy the equation i2 = j2 = k2 =
ijk = −1.

The quaternion parts a, b, c, and d specify the axis and angle of rotation. For a rotation of ɑ radians
about a rotation axis represented by the unit vector [x, y, z], the quaternion describing the rotation is
given by this equation:

cos α
2 + sin α

2 xi + yj + zk

Quaternion Creation
You can create quaternions in multiple ways. For example, create a quaternion by specifying its parts.

q = quaternion(1,2,3,4)

q =

 quaternion

 1 + 2i + 3j + 4k

 Rotations, Orientations, and Quaternions for Automated Driving

4-35

You can create arrays of quaternions in the same way. For example, create a 2-by-2 quaternion array
by specifying four 2-by-2 matrices.

qArray = quaternion([1 10; -1 1], [2 20; -2 2], [3 30; -3 3], [4 40; -4 4])

qArray =

 2x2 quaternion array

 1 + 2i + 3j + 4k 10 + 20i + 30j + 40k
 -1 - 2i - 3j - 4k 1 + 2i + 3j + 4k

You can also use four-column arrays to construct quaternions, where each column represents a
quaternion part. For example, create an array of quaternions that represent random rotations.

qRandom = randrot(4,1)

qRandom =

 4x1 quaternion array

 0.14515 + 0.086053i + 0.96601j + 0.19583k
 0.51365 - 0.36627i + 0.77569j - 0.017661k
 -0.81811 - 0.15704i - 0.4889j + 0.25887k
 0.27111 + 0.10774i + 0.95433j - 0.064451k

Index and manipulate quaternions just like any other array. For example, index a quaternion from the
qRandom quaternion array.

qRandom(3)

ans =

 quaternion

 -0.81811 - 0.15704i - 0.4889j + 0.25887k

Reshape the quaternion array.

reshape(qRandom,2,2)

ans =

 2x2 quaternion array

 0.14515 + 0.086053i + 0.96601j + 0.19583k -0.81811 - 0.15704i - 0.4889j + 0.25887k
 0.51365 - 0.36627i + 0.77569j - 0.017661k 0.27111 + 0.10774i + 0.95433j - 0.064451k

4 Planning, Mapping, and Control

4-36

Concatenate the quaternion array with the first quaternion that you created.

[qRandom; q]

ans =

 5x1 quaternion array

 0.14515 + 0.086053i + 0.96601j + 0.19583k
 0.51365 - 0.36627i + 0.77569j - 0.017661k
 -0.81811 - 0.15704i - 0.4889j + 0.25887k
 0.27111 + 0.10774i + 0.95433j - 0.064451k
 1 + 2i + 3j + 4k

Quaternion Math
Quaternions have well-defined arithmetic operations. To apply these operations, first define two
quaternions by specifying their real-number parts.

q1 = quaternion(1,2,3,4)

q1 = quaternion
 1 + 2i + 3j + 4k

q2 = quaternion(-5,6,-7,8)

q2 = quaternion
 -5 + 6i - 7j + 8k

Addition of quaternions is similar to complex numbers, where parts are added independently.

q1 + q2

ans = quaternion
 -4 + 8i - 4j + 12k

Subtraction of quaternions works similar to addition of quaternions.

q1 - q2

ans = quaternion
 6 - 4i + 10j - 4k

Because the complex elements of quaternions must satisfy the equation

i2 = j2 = k2 = ijk = − 1,

multiplication of quaternions is more complex than addition and subtraction. Given this requirement,
multiplication of quaternions is not commutative. That is, when multiplying quaternions, reversing
the order of the quaternions changes the result of their product.

 Rotations, Orientations, and Quaternions for Automated Driving

4-37

q1 * q2

ans = quaternion
 -28 + 48i - 14j - 44k

q2 * q1

ans = quaternion
 -28 - 56i - 30j + 20k

However, every quaternion has a multiplicative inverse, so you can divide quaternions. Right division
of q1 by q2 is equivalent to q1(q2−1).

q1 ./ q2

ans = quaternion
 0.10345 - 0.3908i - 0.091954j + 0.022989k

Left division of q1 by q2 is equivalent to (q2−1)q1.

q1 .\ q2

ans = quaternion
 0.6 - 1.2i + 0j + 2k

The conjugate of a quaternion is formed by negating each of the complex parts, similar to conjugate
of a complex number.

conj(q1)

ans = quaternion
 1 - 2i - 3j - 4k

To describe a rotation using a quaternion, the quaternion must be a unit quaternion. A unit
quaternion has a norm of 1, where the norm is defined as

norm q = a2 + b2 + c2 + d2.

Normalize a quaternion.

qNormalized = normalize(q1)

qNormalized = quaternion
 0.18257 + 0.36515i + 0.54772j + 0.7303k

Verify that this normalized unit quaternion has a norm of 1.

norm(qNormalized)

ans = 1.0000

The rotation matrix for the conjugate of a normalized quaternion is equal to the inverse of the
rotation matrix for that normalized quaternion.

4 Planning, Mapping, and Control

4-38

rotmat(conj(qNormalized),'point')

ans = 3×3

 -0.6667 0.6667 0.3333
 0.1333 -0.3333 0.9333
 0.7333 0.6667 0.1333

inv(rotmat(qNormalized,'point'))

ans = 3×3

 -0.6667 0.6667 0.3333
 0.1333 -0.3333 0.9333
 0.7333 0.6667 0.1333

Extract Quaternions from Transformation Matrix
If you have a 3-D transformation matrix created using functions such as rigid3d or affine3d, you
can extract the rotation matrix from it and represent it in the form of a quaternion. However, before
performing this conversion, you must first convert the rotation matrix from the postmultiply format to
the premultiply format expected by quaternions.

Postmultiply Format

To perform rotations using the rotation matrix part of a transformation matrix, multiply an (x, y, z)
point by this rotation matrix.

• In point rotations, this point is rotated within a frame of reference.
• In frame rotations, the frame of reference is rotated around this point.

Transformation matrices represented by rigid3d or affine3d objects use a postmultiply format. In
this format, the point is multiplied by the rotation matrix, in that order. To satisfy the matrix
multiplication, the point and its corresponding translation vector must be row vectors.

This equation shows the postmultiply format for a rotation matrix, R, and a translation vector, t.

x′ y′ z′ = x y z
R11 R12 R13
R21 R22 R23
R31 R32 R33

+ tx ty tz

This format also applies when R and t are combined into a homogeneous transformation matrix. In
this matrix, the 1 is used to satisfy the matrix multiplication and can be ignored.

x′ y′ z′ 1 = x y z 1

R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
tx ty tz 1

 Rotations, Orientations, and Quaternions for Automated Driving

4-39

Premultiply Format

In the premultiply format, the rotation matrix is multiplied by the point, in that order. To satisfy the
matrix multiplication, the point and its corresponding translation vector must be column vectors.

This equation shows the premultiply format, where R is the rotation matrix and t is the translation
vector.

x′
y′
z′

=
R11 R12 R13
R21 R22 R23
R31 R32 R33

x
y
z

+
tx
ty
tz

As with the postmultiply case, this format also applies when R and t are combined into a
homogeneous transformation matrix.

x′
y′
z′
1

=

R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

x
y
z
1

Convert from Postmultiply to Premultiply Format

To convert a rotation matrix to the premultiply format expected by quaternions, take the transpose of
the rotation matrix.

Create a 3-D rigid geometric transformation object from a rotation matrix and translation vector. The
angle of rotation, θ, is in degrees.

theta = 30;
rot = [cosd(theta) sind(theta) 0; ...
 -sind(theta) cosd(theta) 0; ...
 0 0 1];
trans = [2 3 4];

tform = rigid3d(rot,trans)

tform =
 rigid3d with properties:

 Rotation: [3x3 double]
 Translation: [2 3 4]

The elements of the rotation matrix are ordered for rotating points using the postmultiply format.
Convert the matrix to the premultiply format by taking its transpose. Notice that the second element
of the first row and first column swap locations.

rotPost = tform.Rotation

rotPost = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

4 Planning, Mapping, and Control

4-40

rotPre = rotPost.'

rotPre = 3×3

 0.8660 -0.5000 0
 0.5000 0.8660 0
 0 0 1.0000

Create a quaternion from the premultiply version of the rotation matrix. Specify that the rotation
matrix is configured for point rotations.

q = quaternion(rotPre,'rotmat','point')

q = quaternion
 0.96593 + 0i + 0j + 0.25882k

To verify that the premultiplied quaternion and the postmultiplied rotation matrix produce the same
results, rotate a sample point using both approaches.

point = [1 2 3];
rotatedPointQuaternion = rotatepoint(q,point)

rotatedPointQuaternion = 1×3

 -0.1340 2.2321 3.0000

rotatedPointRotationMatrix = point * rotPost

rotatedPointRotationMatrix = 1×3

 -0.1340 2.2321 3.0000

To convert back to the original rotation matrix, extract a rotation matrix from the quaternion. Then,
create a rigid3d object by using the transpose of this rotation matrix.

R = rotmat(q,'point');
T = rigid3d(R',trans);
T.Rotation

ans = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

See Also
affine3d | quaternion | rigid3d | rotateframe | rotatepoint

More About
• “Build a Map from Lidar Data”
• “Build a Map from Lidar Data Using SLAM”

 Rotations, Orientations, and Quaternions for Automated Driving

4-41

Control Vehicle Velocity
This model uses a Longitudinal Controller Stanley block to control the velocity of a vehicle in forward
motion. In this model, the vehicle accelerates from 0 to 10 meters per second.

The Longitudinal Controller Stanley block is a discrete proportional-integral controller with integral
anti-windup. Given the current velocity and driving direction of a vehicle, the block outputs the
acceleration and deceleration commands needed to match the specified reference velocity.

Run the model. Then, open the scope to see the change in velocity and the corresponding
acceleration and deceleration commands.

4 Planning, Mapping, and Control

4-42

The Longitudinal Controller Stanley block saturates the acceleration command at a maximum value of
3 meters per second. The Maximum longitudinal acceleration (m/s^2) parameter of the block
determines this maximum value. Try tuning this parameter and resimulating the model. Observe the
effects of the change on the scope. Other parameters that you can tune include the gain coefficients
of the proportional and integral components of the block, using the Proportional gain, Kp and
Integral gain, Ki parameters, respectively.

See Also
Lateral Controller Stanley | Longitudinal Controller Stanley

More About
• “Automated Parking Valet in Simulink”

 Control Vehicle Velocity

4-43

Velocity Profile of Straight Path
This model uses a Velocity Profiler block to generate a velocity profile for a vehicle traveling forward
on a straight, 100-meter path that has no changes in direction.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration, and jerk
constraints that you specify using parameters. You can use the generated velocity profile as the input
reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler block in a
complete automated driving model. To see how to use this block in such a model, see the “Automated
Parking Valet in Simulink” example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the model.

model = 'VelocityProfileStraightPath';
open_system(model)

The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path, where 1 means
forward and –1 means reverse. Because the vehicle travels only forward, the direction is 1 along
the entire path.

• The CumLengths input specifies the length of the path. The path is 100 meters long and is
composed of a sequence of 200 cumulative path lengths.

4 Planning, Mapping, and Control

4-44

• The Curvatures input specifies the curvature along the path. Because this path is straight, the
curvature is 0 along the entire path.

In a complete automated driving model, you can obtain these input values from the output of a Path
Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start and end of
the path, respectively. The vehicle starts the path traveling at a velocity of 1 meter per second and
reaches the end of the path traveling at a velocity of 2 meters per second.

Generate Velocity Profile

Simulate the model to generate the velocity profile.

out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler block.

The block also outputs the times at which the vehicle arrives at each point along the path. You can
use this output to visualize the velocities over time.

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Times (s)')
ylabel('Velocities (m/s)')
grid on

 Velocity Profile of Straight Path

4-45

A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates to a maximum speed of 10 meters per second, as specified by the Maximum

allowable speed (m/s) parameter of the Velocity Profiler block
3 Decelerates to its ending velocity of 2 meters per second

For comparison, plot the displacement of the vehicle over time by using the cumulative path lengths.

figure
cumLengths = linspace(0,100,200);
plot(times,cumLengths)
title('Displacement')
xlabel('Time (s)')
ylabel('Cumulative Path Length (m)')
grid on

4 Planning, Mapping, and Control

4-46

For details on how the block calculates the velocity profile, see the “Algorithms” section of the
Velocity Profiler block reference page.

See Also
Path Smoother Spline | Velocity Profiler

More About
• “Velocity Profile of Path with Curve and Direction Change” on page 4-48
• “Automated Parking Valet in Simulink”

 Velocity Profile of Straight Path

4-47

Velocity Profile of Path with Curve and Direction Change
This model uses a Velocity Profiler block to generate a velocity profile for a driving path that includes
a curve and a change in direction. In this model, the vehicle travels forward on a curved path for 50
meters, and then travels straight in reverse for another 50 meters.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration, and jerk
constraints that you specify using parameters. You can use the generated velocity profile as the input
reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler block in a
complete automated driving model. To see how to use this block in such a model, see the “Automated
Parking Valet in Simulink” example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the model.

model = 'VelocityProfileCurvedPathDirectionChanges';
open_system(model)

4 Planning, Mapping, and Control

4-48

The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path, where 1 means
forward and –1 means reverse. In the first path segment, because the vehicle travels only forward,
the direction is 1 along the entire segment. In the second path segment, because the vehicle
travels only in reverse, the direction is –1 along the entire segment.

• The CumLengths input specifies the length of the path. The path consists of two 50-meter
segments. The first segment represents a forward left turn, and the second segment represents a
straight path in reverse. The path is composed of a sequence of 200 cumulative path lengths, with
100 lengths per 50-meter segment.

• The Curvatures input specifies the curvature along this path. The curvature of the first path
segment corresponds to a turning radius of 50 meters. Because the second path segment is
straight, the curvature is 0 along the entire segment.

In a complete automated driving model, you can obtain these input values from the output of a Path
Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start and end of
the path, respectively. The vehicle starts the path traveling at a velocity of 1 meter per second and
reaches the end of the path traveling at a velocity of –1 meters per second. The negative velocity
indicates that the vehicle is traveling in reverse at the end of the path.

Generate Velocity Profile

Simulate the model to generate the velocity profile.

out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler block.

The block also outputs the times at which the vehicle arrives at each point along the path. You can
use this output to visualize the velocities over time.

 Velocity Profile of Path with Curve and Direction Change

4-49

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
annotation('textarrow',[0.63 0.53],[0.56 0.56],'String',{'Direction change'});
grid on

For this path, the Velocity Profiler block generates two separate velocity profiles: one for the forward
left turn and one for the straight reverse motion. In the final output, the block concatenates these
velocities into a single velocity profile.

A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates forward
3 Decelerates until its velocity reaches 0, so that the vehicle can switch driving directions
4 Accelerates in reverse

4 Planning, Mapping, and Control

4-50

5 Decelerates until it reaches its ending velocity

In both driving directions, the vehicle fails to reach the maximum speed specified by the Maximum
allowable speed (m/s) parameter of the Velocity Profiler block, because the path is too short.

For details on how the block calculates the velocity profile, see the “Algorithms” section of the
Velocity Profiler block reference page.

See Also
Path Smoother Spline | Velocity Profiler

More About
• “Velocity Profile of Straight Path” on page 4-44
• “Automated Parking Valet in Simulink”

 Velocity Profile of Path with Curve and Direction Change

4-51

Cuboid Driving Scenario Simulation

5

Build a Driving Scenario and Generate Synthetic Detections
This example shows you how to build a driving scenario and generate vision and radar sensor
detections from it by using the Driving Scenario Designer app. You can use these detections to test
your controllers or sensor fusion algorithms.

This example covers the entire workflow for creating a scenario and generating synthetic detections.
Alternatively, you can generate detections from prebuilt scenarios. For more details, see “Prebuilt
Driving Scenarios in Driving Scenario Designer” on page 5-14.

Create a New Driving Scenario
To open the app, at the MATLAB command prompt, enter drivingScenarioDesigner.

Add a Road
Add a curved road to the scenario canvas. On the app toolstrip, click Add Road. Then click one
corner of the canvas, extend the road to the opposite corner, and double-click to create the road.

5 Cuboid Driving Scenario Simulation

5-2

To make the road curve, add a road center around which to curve it. Right-click the middle of the
road and select Add Road Center. Then drag the added road center to one of the empty corners of
the canvas.

 Build a Driving Scenario and Generate Synthetic Detections

5-3

To adjust the road further, you can click and drag any of the road centers. To create more complex
curves, add more road centers.

Add Lanes
By default, the road is a single lane and has no lane markings. To make the scenario more realistic,
convert the road into a two-lane highway. In the left pane, on the Roads tab, expand the Lanes
section. Set the Number of lanes to [1 1] and the Lane Width to 3.6 meters, which is a typical
highway lane width.

5 Cuboid Driving Scenario Simulation

5-4

The white, solid lanes markings on either edge of the road indicate the road shoulder. The yellow,
double-solid lane marking in the center indicates that the road is two-way. To inspect or modify these
lanes, from the Marking list, select one of the lanes and modify the lane parameters.

Add Vehicles
By default, the first car that you add to a scenario is the ego vehicle, which is the main car in the
driving scenario. The ego vehicle contains the sensors that detect the lane markings, pedestrians, or
other cars in the scenario. Add the ego vehicle, and then add a second car for the ego vehicle to
detect.

Add Ego Vehicle

To add the ego vehicle, right-click one end of the road, and select Add Car. To specify the trajectory
of the car, right-click the car, select Add Waypoints, and add waypoints along the road for the car to
pass through. After you add the last waypoint along the road, press Enter. The car autorotates in the
direction of the first waypoint. For finer precision over the trajectory, you can adjust the waypoints.
You can also right-click the path to add new waypoints.

 Build a Driving Scenario and Generate Synthetic Detections

5-5

Now adjust the speed of the car. In the left pane, on the Actors tab, set Constant Speed to 15 m/s.
For more control over the speed of the car, clear the Constant Speed check box and set the velocity
between waypoints in the Waypoints table.

Add Second Car

Add a vehicle for the ego vehicle to detect. On the app toolstrip, click Add Actor and select Car. Add
the second car with waypoints, driving in the lane opposite from the ego vehicle and on the other end
of the road. Leave the speed and other settings of the car unchanged.

5 Cuboid Driving Scenario Simulation

5-6

Add a Pedestrian
Add to the scenario a pedestrian crossing the road. Zoom in (Ctrl+Plus) on the middle of the road,
right-click one side of the road, and click Add Pedestrian. Then, to set the path of the pedestrian,
add a waypoint on the other side of the road.

 Build a Driving Scenario and Generate Synthetic Detections

5-7

By default, the color of the pedestrian nearly matches the color of the lane markings. To make the
pedestrian stand out more, from the Actors tab, click the corresponding color patch for the
pedestrian to modify its color.

To test the speed of the cars and the pedestrian, run the simulation. Adjust actor speeds or other
properties as needed by selecting the actor from the left pane of the Actors tab.

Add Sensors
Add front-facing radar and vision (camera) sensors to the ego vehicle. Use these sensors to generate
detections of the pedestrian, the lane boundaries, and the other vehicle.

Add Camera

On the app toolstrip, click Add Camera. The sensor canvas shows standard locations at which to
place sensors. Click the front-most predefined sensor location to add a camera sensor to the front
bumper of the ego vehicle. To place sensors more precisely, you can disable snapping options. In the
bottom-left corner of the sensor canvas, click the Configure the Sensor Canvas button .

5 Cuboid Driving Scenario Simulation

5-8

By default, the camera detects only actors and not lanes. To enable lane detections, on the Sensors
tab in the left pane, expand the Detection Parameters section and set Detection Type to Objects
& Lanes. Then expand the Lane Settings section and update the settings as needed.

Add Radar

Snap a radar sensor to the front-left wheel. Right-click the predefined sensor location for the wheel
and select Add Radar. By default, sensors added to the wheels are short range.

Tilt the radar sensor toward the front of the car. Move your cursor over the coverage area, then click
and drag the angle marking.

 Build a Driving Scenario and Generate Synthetic Detections

5-9

Add an identical radar sensor to the front-right wheel. Right-click the sensor on the front-left wheel
and click Copy. Then right-click the predefined sensor location for the front-right wheel and click
Paste. The orientation of the copied sensor mirrors the orientation of the sensor on the opposite
wheel.

5 Cuboid Driving Scenario Simulation

5-10

The camera and radar sensors now provide overlapping coverage of the front of the ego vehicle.

Generate Synthetic Detections
Run Scenario

To generate detections from the sensors, click Run. As the scenario runs, the Ego-Centric View
displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye Plot displays the
detections.

 Build a Driving Scenario and Generate Synthetic Detections

5-11

To turn off certain types of detections, in the bottom-left corner of the bird's-eye plot, click the
Configure the Bird's-Eye Plot button .

By default, the scenario ends when the first actor stops. To run the scenario for a set amount of time,
on the app toolstrip, click Settings and change the stop condition.

Export Sensor Detections

• To export detections to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing the actor poses, object detections, and lane detections at each time step.

• To export a MATLAB function that generates the scenario and its detections, select Export >
Export MATLAB Function. This function returns the sensor detections as a structure, the
scenario as a drivingScenario object, and the sensor models as visionDetectionGenerator
and radarDetectionGenerator System objects. By modifying this function, you can create
variations of the original scenario. For an example of this process, see “Create Driving Scenario
Variations Programmatically” on page 5-80.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you can save the
sensor models as separate files. You can also save the road and actor models together as a separate
scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

5 Cuboid Driving Scenario Simulation

5-12

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

To reopen sensors, use this syntax, where sensors is a radarDetectionGenerator object,
visionDetectionGenerator object, or a cell array of such objects.

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors created in the app to a Simulink model, you can
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In this model, a Scenario Reader block reads the scenario and Radar Detection Generator
and Vision Detection Generator blocks model the sensors.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36
• “Import OpenDRIVE Roads into Driving Scenario” on page 5-62
• “Create Driving Scenario Variations Programmatically” on page 5-80
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100

 Build a Driving Scenario and Generate Synthetic Detections

5-13

Prebuilt Driving Scenarios in Driving Scenario Designer
The Driving Scenario Designer app provides a library of prebuilt scenarios representing common
driving maneuvers. The app also includes scenarios representing European New Car Assessment
Programme (Euro NCAP®) test protocols and cuboid versions of the prebuilt scenes used in the 3D
simulation environment.

Choose a Prebuilt Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

In the app, the prebuilt scenarios are stored as MAT-files and organized into folders. To open a
prebuilt scenario file, from the app toolstrip, select Open > Prebuilt Scenario. Then select a
prebuilt scenario from one of the folders.

• “Euro NCAP” on page 5-14
• “Intersections” on page 5-14
• “Simulation 3D” on page 5-19
• “Turns” on page 5-19
• “U-Turns” on page 5-27

Euro NCAP

These scenarios represent Euro NCAP test protocols. The app includes scenarios for testing
autonomous emergency braking, emergency lane keeping, and lane keep assist systems. For more
details, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36.

Intersections

These scenarios involve common traffic patterns at four-way intersections and roundabouts.

5 Cuboid Driving Scenario Simulation

5-14

File Name Description
EgoVehicleGoesStraight_BicycleFromLeft
GoesStraight_Collision.mat

The ego vehicle travels north and goes straight
through an intersection. A bicycle coming from
the left side of the intersection goes straight and
collides with the ego vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-15

File Name Description
EgoVehicleGoesStraight_PedestrianToRig
htGoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A pedestrian in the lane
to the right of the ego vehicle also travels north
and goes straight through the intersection.

5 Cuboid Driving Scenario Simulation

5-16

File Name Description
EgoVehicleGoesStraight_VehicleFromLeft
GoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the left side of the intersection also goes straight.
The ego vehicle crosses in front of the other
vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-17

File Name Description
EgoVehicleGoesStraight_VehicleFromRigh
tGoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the right side of the intersection also goes
straight and crosses through the intersection
first.

5 Cuboid Driving Scenario Simulation

5-18

File Name Description
Roundabout.mat The ego vehicle travels north and crosses the

path of a pedestrian while entering a roundabout.
The ego vehicle then crosses the path of another
vehicle as both vehicles drive through the
roundabout.

Simulation 3D

These scenarios are cuboid versions of several of the prebuilt scenes available in the 3D simulation
environment. You can add vehicles and trajectories to these scenarios. Then, you can include these
vehicles and trajectories in your Simulink model to simulate them in the 3D environment. This
environment is rendered using the Unreal Engine from Epic Games. For more details on these
scenarios, see “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-
55.

Turns

These scenarios involve turns at four-way intersections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-19

File Name Description
EgoVehicleGoesStraight_VehicleFromLeft
TurnsLeft.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the left side of the intersection turns left and
ends up in front of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-20

File Name Description
EgoVehicleGoesStraight_VehicleFromRigh
tTurnsRight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the right side of the intersection turns right and
ends up in front of the ego vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-21

File Name Description
EgoVehicleGoesStraight_VehicleInFrontT
urnsLeft.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle in front of the
ego vehicle turns left at the intersection.

5 Cuboid Driving Scenario Simulation

5-22

File Name Description
EgoVehicleGoesStraight_VehicleInFrontT
urnsRight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle in front of the
ego vehicle turns right at the intersection.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-23

File Name Description
EgoVehicleTurnsLeft_PedestrianFromLeft
GoesStraight.mat

The ego vehicle travels north and turns left at an
intersection. A pedestrian coming from the left
side of the intersection goes straight. The ego
vehicle completes its turn before the pedestrian
finishes crossing the intersection.

5 Cuboid Driving Scenario Simulation

5-24

File Name Description
EgoVehicleTurnsLeft_PedestrianInOppLan
eGoesStraight.mat

The ego vehicle travels north and turns left at an
intersection. A pedestrian in the opposite lane
goes straight through the intersection. The ego
vehicle completes its turn before the pedestrian
finishes crossing the intersection.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-25

File Name Description
EgoVehicleTurnsLeft_VehicleInFrontGoes
Straight.mat

The ego vehicle travels north and turns left at an
intersection. A vehicle in front of the ego vehicle
goes straight through the intersection.

5 Cuboid Driving Scenario Simulation

5-26

File Name Description
EgoVehicleTurnsRight_VehicleInFrontGoe
sStraight.mat

The ego vehicle travels north and turns right at
an intersection. A vehicle in front of the ego
vehicle goes straight through the intersection.

U-Turns

These scenarios involve U-turns at four-way intersections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-27

File Name Description
EgoVehicleGoesStraight_VehicleInOppLaneM
akesUTurn.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle in
the opposite lane makes a U-turn. The ego
vehicle ends up behind the vehicle.

5 Cuboid Driving Scenario Simulation

5-28

File Name Description
EgoVehicleMakesUTurn_PedestrianFromRight
GoesStraight.mat

The ego vehicle travels north and makes a U-
turn at an intersection. A pedestrian coming
from the right side of the intersection goes
straight and crosses the path of the U-turn.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-29

File Name Description
EgoVehicleMakesUTurn_VehicleInOppLaneGoe
sStraight.mat

The ego vehicle travels north and makes a U-
turn at an intersection. A vehicle traveling
south in the opposite direction goes straight
and ends up behind the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-30

File Name Description
EgoVehicleTurnsLeft_Vehicle1MakesUTurn_V
ehicle2GoesStraight.mat

The ego vehicle travels north and turns left at
an intersection. A vehicle in front of the ego
vehicle makes a U-turn at the intersection. A
second vehicle, a truck, comes from the right
side of the intersection. The ego vehicle ends
up in the lane next to the truck.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-31

File Name Description
EgoVehicleTurnsLeft_VehicleFromLeftMakes
UTurn.mat

The ego vehicle travels north and turns left at
an intersection. A vehicle coming from the left
side of the intersection makes a U-turn. The
ego vehicle ends up in the lane next to the
other vehicle.

5 Cuboid Driving Scenario Simulation

5-32

File Name Description
EgoVehicleTurnsRight_VehicleFromRightMak
esUTurn.mat

The ego vehicle travels north and turns right
at an intersection. A vehicle coming from the
right side of the intersection makes a U-turn.
The ego vehicle ends up behind the vehicle, in
an adjacent lane.

Modify Scenario
After you choose a scenario, you can modify the parameters of the roads and actors. For example,
from the Actors tab on the left, you can change the position or velocity of the ego vehicle or other
actors. From the Roads tab, you can change the width of the lanes or the type of lane markings.

You can also add or modify sensors. For example, from the Sensors tab, you can change the detection
parameters or the positions of the sensors. By default, in Euro NCAP scenarios, the ego vehicle does
not contain sensors. All other prebuilt scenarios have at least one front-facing camera or radar
sensor, set to detect lanes and objects.

Generate Synthetic Detections
To generate detections from the sensors, on the app toolstrip, click Run. As the scenario runs, the
Ego-Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye
Plot displays the detections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-33

Export the detections.

• To export detections to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing the actor poses, object detections, and lane detections at each time step.

• To export a MATLAB function that generates the scenario and its detections, select Export >
Export MATLAB Function. This function returns the sensor detections as a structure, the
scenario as a drivingScenario object, and the sensor models as visionDetectionGenerator
and radarDetectionGenerator System objects. By modifying this function, you can create
variations of the original scenario. For an example of this process, see “Create Driving Scenario
Variations Programmatically” on page 5-80.

Save Scenario
Because prebuilt scenarios are read-only, save a copy of the driving scenario to a new folder. To save
the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

5 Cuboid Driving Scenario Simulation

5-34

To reopen sensors, use this syntax, where sensors is a radarDetectionGenerator object,
visionDetectionGenerator object, or a cell array of such objects.

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors created in the app to a Simulink model, you can
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In this model, a Scenario Reader block reads the scenario and Radar Detection Generator
and Vision Detection Generator blocks model the sensors.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36
• “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-55
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-35

Euro NCAP Driving Scenarios in Driving Scenario Designer
The Driving Scenario Designer app provides a library of prebuilt scenarios representing European
New Car Assessment Programme (Euro NCAP) test protocols. The app includes scenarios for testing
autonomous emergency braking (AEB), emergency lane keeping (ELK), and lane keep assist (LKA)
systems.

Choose a Euro NCAP Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

In the app, the Euro NCAP scenarios are stored as MAT-files and organized into folders. To open a
Euro NCAP file, on the app toolstrip, select Open > Prebuilt Scenario. The PrebuiltScenarios
folder opens, which includes subfolders for all prebuilt scenarios available in the app (see also
“Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14).

Double-click the EuroNCAP folder, and then choose a Euro NCAP scenario from one of these
subfolders.

• “Autonomous Emergency Braking” on page 5-36
• “Emergency Lane Keeping” on page 5-42
• “Lane Keep Assist” on page 5-46

Autonomous Emergency Braking

These scenarios are designed to test autonomous emergency braking (AEB) systems. AEB systems
warn drivers of impending collisions and automatically apply brakes to prevent collisions or reduce
the impact of collisions. Some AEB systems prepare the vehicle and restraint systems for impact.

The table lists a subset of the available AEB scenarios. Other AEB scenarios in the folder vary the
points of collision, the amount of overlap between vehicles, and the initial gap between vehicles.

5 Cuboid Driving Scenario Simulation

5-36

File Name Description
AEB_Bicyclist_Longitudinal_25width.mat The ego vehicle collides with the bicyclist that is

in front of it. Before the collision, the bicyclist
and ego vehicle are traveling in the same
direction along the longitudinal axis. At collision
time, the bicycle is 25% of the way across the
width of the ego vehicle.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-37

File Name Description
AEB_CCRb_2_initialGap_12m.mat A car-to-car rear braking (CCRb) scenario, where

the ego vehicle rear-ends a braking vehicle. The
braking vehicle begins to decelerate at 2 m/s2.
The initial gap between the ego vehicle and the
braking vehicle is 12 m.

5 Cuboid Driving Scenario Simulation

5-38

File Name Description
AEB_CCRm_50overlap.mat A car-to-car rear moving (CCRm) scenario, where

the ego vehicle rear-ends a moving vehicle. At
collision time, the ego vehicle overlaps with 50%
of the width of the moving vehicle.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-39

File Name Description
AEB_CCRs_-75overlap.mat A car-to-car rear stationary (CCRs) scenario,

where the ego vehicle rear-ends a stationary
vehicle. At collision time, the ego vehicle overlaps
with –75% of the width of the stationary vehicle.
When the ego vehicle is to the left of the other
vehicle, the percent overlap is negative.

5 Cuboid Driving Scenario Simulation

5-40

File Name Description
AEB_Pedestrian_Farside_50width.mat The ego vehicle collides with a pedestrian who is

traveling from the left side of the road, which
Euro NCAP test protocols refer to as the far side.
These protocols assume that vehicles travel on
the right side of the road. Therefore, the left side
of the road is the side farthest from the ego
vehicle. At collision time, the pedestrian is 50% of
the way across the width of the ego vehicle.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-41

File Name Description
AEB_PedestrianChild_Nearside_50width.m
at

The ego vehicle collides with a pedestrian who is
traveling from the right side of the road, which
Euro NCAP test protocols refer to as the near
side. These protocols assume that vehicles travel
on the right side of the road. Therefore, the right
side of the road is the side nearest to the ego
vehicle. At collision time, the pedestrian is 50% of
the way across the width of the ego vehicle.

Emergency Lane Keeping

These scenarios are designed to test emergency lane keeping (ELK) systems. ELK systems prevent
collisions by warning drivers of impending, unintentional lane departures.

The table lists a subset of the available ELK scenarios. Other ELK scenarios in the folder vary the
lateral velocity of the ego vehicle and the lane marking types.

5 Cuboid Driving Scenario Simulation

5-42

File Name Description
ELK_FasterOvertakingVeh_Intent_Vlat_0.
5.mat

The ego vehicle intentionally changes lanes and
collides with a faster, overtaking vehicle that is in
the other lane. The ego vehicle travels at a lateral
velocity of 0.5 m/s.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-43

File Name Description
ELK_OncomingVeh_Vlat_0.3.mat The ego vehicle unintentionally changes lanes

and collides with an oncoming vehicle that is in
the other lane. The ego vehicle travels at a lateral
velocity of 0.3 m/s.

5 Cuboid Driving Scenario Simulation

5-44

File Name Description
ELK_OvertakingVeh_Unintent_Vlat_0.3.ma
t

The ego vehicle unintentionally changes lanes,
overtakes a vehicle in the other lane, and collides
with that vehicle. The ego vehicle travels at a
lateral velocity of 0.3 m/s.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-45

File Name Description
ELK_RoadEdge_NoBndry_Vlat_0.2.mat The ego vehicle unintentionally changes lanes

and ends up on the road edge. The road edge has
no lane boundary markings. The ego vehicle
travels at a lateral velocity of 0.2 m/s.

Lane Keep Assist

These scenarios are designed to test lane keep assist (LKA) systems. LKA systems detect
unintentional lane departures and automatically adjust the steering angle of the vehicle to stay within
the lane boundaries.

The table lists a subset of the available LKA scenarios. Other LKA scenarios in the folder vary the
lateral velocity of the ego vehicle and the lane marking types.

5 Cuboid Driving Scenario Simulation

5-46

File Name Description
LKA_DashedLine_Solid_Left_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane that is dashed on the left and solid on the
right. The car departs the lane from the left
(dashed) side, traveling at a lateral velocity of 0.5
m/s.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-47

File Name Description
LKA_DashedLine_Unmarked_Right_Vlat_0.5
.mat

The ego vehicle unintentionally departs from a
lane that is dashed on the right and unmarked on
the left. The car departs the lane from the right
(dashed) side, traveling at a lateral velocity of 0.5
m/s.

5 Cuboid Driving Scenario Simulation

5-48

File Name Description
LKA_RoadEdge_NoBndry_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane and ends up on the road edge. The road
edge has no lane boundary markings. The car
travels at a lateral velocity of 0.5 m/s.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-49

File Name Description
LKA_RoadEdge_NoMarkings_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane and ends up on the road edge. The road has
no lane markings. The car travels at a lateral
velocity of 0.5 m/s.

5 Cuboid Driving Scenario Simulation

5-50

File Name Description
LKA_SolidLine_Dashed_Left_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane that is solid on the left and dashed on the
right. The car departs the lane from the left
(solid) side, traveling at a lateral velocity of 0.5
m/s.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-51

File Name Description
LKA_SolidLine_Unmarked_Right_Vlat_0.5.
mat

The ego vehicle unintentionally departs from a
lane that is a solid on the right and unmarked on
the left. The car departs the lane from the right
(solid) side, traveling at a lateral velocity of 0.5
m/s.

Modify Scenario
By default, in Euro NCAP scenarios, the ego vehicle does not contain sensors. If you are testing a
vehicle sensor, on the app toolstrip, click Add Camera or Add Radar to add a sensor to the ego
vehicle. Then, on the Sensor tab, adjust the parameters of the sensors to match your sensor model. If
you are testing a camera sensor, to enable the camera to detect lanes, expand the Detection
Parameters section, and set Detection Type to Lanes & Objects.

You can also adjust the parameters of the roads and actors in the scenario. For example, from the
Actors tab on the left, you can change the position or velocity of the ego vehicle or other actors.
From the Roads tab, you can change the width of lanes or the type of lane markings.

Generate Synthetic Detections
To generate detections from any added sensors, click Run. As the scenario runs, the Ego-Centric
View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye Plot displays the
detections.

5 Cuboid Driving Scenario Simulation

5-52

Export the detections.

• To export detections to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing the actor poses, object detections, and lane detections at each time step.

• To export a MATLAB function that generates the scenario and its detections, select Export >
Export MATLAB Function. This function returns the sensor detections as a structure, the
scenario as a drivingScenario object, and the sensor models as visionDetectionGenerator
and radarDetectionGenerator System objects. By modifying this function, you can create
variations of the original scenario. For an example of this process, see “Create Driving Scenario
Variations Programmatically” on page 5-80.

Save Scenario
Because Euro NCAP scenarios are read-only, save a copy of the driving scenario to a new folder. To
save the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-53

To reopen sensors, use this syntax, where sensors is a radarDetectionGenerator object,
visionDetectionGenerator object, or a cell array of such objects.

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors created in the app to a Simulink model, you can
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In this model, a Scenario Reader block reads the scenario and Radar Detection Generator
and Vision Detection Generator blocks model the sensors.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA. Version 8.0.2.

January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol. Version 2.0.1.
January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version 2.0.1. January
2018.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14
• “Create Driving Scenario Variations Programmatically” on page 5-80
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100

External Websites
• Euro NCAP Safety Assist Protocols

5 Cuboid Driving Scenario Simulation

5-54

https://www.euroncap.com/en/for-engineers/protocols/safety-assist/

Cuboid Versions of 3D Simulation Scenes in Driving Scenario
Designer

The Driving Scenario Designer app provides prebuilt scenarios that recreate scenes from the 3D
simulation environment within the cuboid simulation environment. In these cuboid versions of the
scenes, you can add vehicles represented using simple box shapes and specify their trajectories.
Then, you can simulate these vehicles and trajectories in your Simulink model by using the higher
fidelity 3D simulation versions of the scenes. The 3D environment renders these scenes using the
Unreal Engine from Epic Games. For more details about the environment, see “3D Simulation for
Automated Driving” on page 6-2.

Choose 3D Simulation Scenario
Open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

The app stores the 3D simulation scenarios as MAT-files called scenario files. To open a scenario file,
first select Open > Prebuilt Scenario on the app toolstrip. The PrebuiltScenarios folder that
opens includes subfolders for all prebuilt scenarios available in the app.

Double-click the Simulation3D folder, and then choose one of the scenarios described in this table.

File Name of Cuboid Scenario Description Corresponding 3D Scene
CurvedRoad.mat Curved, looped road Curved Road

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-55

File Name of Cuboid Scenario Description Corresponding 3D Scene
DoubleLaneChange.mat Straight road with traffic cones

and traffic barrels that are set
up for executing a double lane
change

The cuboid version does not
include the traffic signs or
traffic light that are in the
corresponding 3D scene.

Double Lane Change

5 Cuboid Driving Scenario Simulation

5-56

File Name of Cuboid Scenario Description Corresponding 3D Scene
StraightRoad.mat Straight road segment Straight Road

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-57

File Name of Cuboid Scenario Description Corresponding 3D Scene
USCityBlock.mat City block with intersections

and barriers

The cuboid version does not
include the traffic lights that are
in the corresponding 3D scene.
It also does not include
crosswalk or pedestrian
markings at intersections or
objects inside the city blocks,
such as buildings, trees, and fire
hydrants.

US City Block

5 Cuboid Driving Scenario Simulation

5-58

File Name of Cuboid Scenario Description Corresponding 3D Scene
USHighway.mat Highway with traffic cones and

barriers

The cuboid version does not
include the traffic signs or
guard rails that are in the
corresponding 3D scene.

US Highway

Note The Driving Scenario Designer app does not include cuboid versions of these scenes:

• Large Parking Lot
• Open Surface
• Parking Lot
• Virtual Mcity

To generate vehicle trajectories for these unsupported scenes, use the process described in the
“Select Waypoints for 3D Simulation” example.

Modify Scenario
With the scenario loaded, you can now add vehicles to the scenario, set their trajectories, and
designate one of the vehicles as the ego vehicle. For an example that shows how to do complete these
actions, see “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2.

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-59

If you plan to simulate these vehicles in the corresponding 3D scene, avoid modifying the road
network or existing road objects, such as barriers and traffic cones. Otherwise, you can break parity
between the two versions and simulation results might differ. To prevent such accidental changes to
the road network, road interactions are disabled by default. If you want to modify the road network,
in the bottom-left corner of the Scenario Canvas pane, click the Configure the Scenario Canvas
button . Then, select Enable road interactions.

You can add sensors to the ego vehicle, but you cannot recreate these sensors in the 3D environment.
The environment has its own sensors in the form of Simulink blocks. For more details, see “Choose a
Sensor for 3D Simulation” on page 6-16.

Save Scenario
Because these scenarios are read-only, to save your scenario file, you must save a copy of it to a new
folder. On the app toolstrip, select Save > Scenario File As.

You can reopen the saved scenario file from the app. Alternatively, at the MATLAB command prompt,
enter this command, where scenarioFileName represents the scenario file to open.

drivingScenarioDesigner(scenarioFileName)

Recreate Scenario in Simulink for 3D Environment
After you save the scenario file containing the vehicles and other actors that you added, you can
recreate these vehicles in trajectories in Simulink. At a high level, follow this workflow:

1 Configure 3D scene — In a new model, add a Simulation 3D Scene Configuration block and
specify the 3D scene that corresponds to your scenario file.

2 Read actor poses from scenario file — Add a Scenario Reader block and read the actor poses at
each time step from your scenario file. These poses comprise the trajectories of the actors.

3 Transform actor poses — Output the actors, including the ego vehicle, from the Scenario Reader
block. Use Vehicle To World and Cuboid To 3D Simulation blocks to convert the actor poses to the
coordinate system used in the 3D environment.

4 Specify actor poses to vehicles — Add Simulation 3D Vehicle with Ground Following blocks that
correspond to the vehicles in your model. Specify the converted actor poses as inputs to the
vehicle blocks.

5 Add sensors and simulate — Add sensors, simulate in the 3D environment, and view sensor data
using the Bird's-Eye Scope.

For an example that follows this workflow, see “Visualize 3D Simulation Sensor Coverages and
Detections” on page 6-35.

See Also
Apps
Driving Scenario Designer

Blocks
Simulation 3D Scene Configuration | Cuboid To 3D Simulation | Scenario Reader | Vehicle To World

5 Cuboid Driving Scenario Simulation

5-60

More About
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14
• “Visualize 3D Simulation Sensor Coverages and Detections” on page 6-35

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-61

Import OpenDRIVE Roads into Driving Scenario
OpenDRIVE [1] is an open file format that enables you to specify large and complex road networks.
Using the Driving Scenario Designer app, you can import roads and lanes from an OpenDRIVE file
into a driving scenario. You can then add actors and sensors to the scenario and generate synthetic
lane and object detections for testing your driving algorithms developed in MATLAB. Alternatively, to
test driving algorithms developed in Simulink, you can use a Scenario Reader block to read the road
network and actors into a model.

To import OpenDRIVE roads and lanes into a drivingScenario object instead of into the app, use
the roadNetwork function.

Import OpenDRIVE File
Open the Driving Scenario Designer app. At the MATLAB command prompt, enter:

drivingScenarioDesigner

To import an OpenDRIVE file, on the app toolstrip, select Import > OpenDRIVE Road Network.
The file you select must be a valid OpenDRIVE file of type .xodr or .xml. In addition, the file must
conform with OpenDRIVE format specification version 1.4H.

From your MATLAB root folder, navigate to and open this file:

matlabroot/examples/driving/data/intersection.xodr

Because you cannot import an OpenDRIVE road network into an existing scenario file, the app
prompts you to save your current driving scenario.

The Scenario Canvas of the app displays the imported road network. The roads in this network are
thousands of meters long. Zoom in (press Ctrl+Plus) on the road to inspect it more closely.

5 Cuboid Driving Scenario Simulation

5-62

Inspect Roads
The imported road network shows a pair of two-lane roads intersecting with a single two-lane road.

 Import OpenDRIVE Roads into Driving Scenario

5-63

Verify that the road network imported as expected, keeping in mind the following limitations and
behaviors within the app.

OpenDRIVE Import Limitations

The Driving Scenario Designer app does not support all components of the OpenDRIVE
specification.

• You can import only lanes, lane type information, and roads. The import of road objects and traffic
signals is not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to load. In
addition, these road networks can cause slow interactions on the app canvas. Examples of large
road networks include ones that model the roads of a city or ones with roads that are thousands of
meters long.

• Lanes with variable widths are not supported. The width is set to the highest width found within
that lane. For example, if a lane has a width that varies from 2 meters to 4 meters, the app sets
the lane width to 4 meters throughout.

• Roads with lane type information specified as driving, border, restricted, shoulder, and
parking are supported. Lanes with any other lane type information are imported as border lanes.

• Roads with multiple lane marking styles specified as 'Unmarked', 'Solid', 'DoubleSolid',
'Dashed', 'DoubleDashed', 'SolidDashed', and 'DashedSolid' are supported.

5 Cuboid Driving Scenario Simulation

5-64

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with these marking
styles are imported as unmarked.

Road Orientation

In the Driving Scenario Designer app, the orientation of roads can differ from the orientation of
roads in other tools that display OpenDRIVE roads. The table shows this difference in orientation
between the app and the OpenDRIVE ODR Viewer.

Driving Scenario Designer OpenDRIVE ODR Viewer

In the OpenDRIVE ODR viewer, the X-axis runs along the bottom of the viewer, and the Y-axis runs
along the left side of the viewer.

In the Driving Scenario Designer app, the Y-axis runs along the bottom of the canvas, and the X-
axis runs along the left side of the canvas. This world coordinate system in the app aligns with the
vehicle coordinate system (XV,YV) used by vehicles in the driving scenario, where:

• The XV-axis (longitudinal axis) points forward from a vehicle in the scenario.
• The YV-axis (lateral axis) points to the left of the vehicle, as viewed when facing forward.

 Import OpenDRIVE Roads into Driving Scenario

5-65

For more details about the coordinate systems, see “Coordinate Systems in Automated Driving
Toolbox” on page 1-2.

Road Centers on Edges

In the Driving Scenario Designer app, the location and orientation of roads are defined by road
centers. When you create a road in the app, the road centers are always in the middle of the road.
When you import OpenDRIVE road networks into the app, however, some roads have their road
centers on the road edges. This behavior occurs when the OpenDRIVE roads are explicitly specified
as being right lanes or left lanes.

Consider the divided highway in the imported OpenDRIVE file. First, enable road interactions so that
you can see the road centers. In the bottom-left corner of the Scenario Canvas, click the Configure
the Scenario Canvas button , and then select Enable road interactions.

• The lanes on the right side of the highway have their road centers on the right edge.
• The lanes on the left side of the highway have their road centers on the left edge.

5 Cuboid Driving Scenario Simulation

5-66

Add Actors and Sensors to Scenario
You can add actors and sensors to a scenario containing OpenDRIVE roads. However, you cannot add
other roads to the scenario. If a scenario contains an OpenDRIVE road network, the Add Road button
in the app toolstrip is disabled. In addition, you cannot import additional OpenDRIVE road networks
into a scenario.

Before adding an actor and sensors, if you have road interactions enabled, consider disabling them to
prevent you from accidentally dragging road centers and changing the road network. If road
interactions are enabled, in the bottom-left corner of the Scenario Canvas, click the Configure the
Scenario Canvas button , and then clear Disable road interactions.

Add an ego vehicle to the scenario by right-clicking one of the roads in the canvas and selecting Add
Car. To specify the trajectory of the car, right-click the car in the canvas, select Add Waypoints, and
add waypoints along the road for the car to pass through. After you add the last waypoint along the
road, press Enter. The car autorotates in the direction of the first waypoint.

 Import OpenDRIVE Roads into Driving Scenario

5-67

Add a camera sensor to the ego vehicle. On the app toolstrip, click Add Camera. Then, on the sensor
canvas, add the camera to the predefined location representing the front window of the car.

5 Cuboid Driving Scenario Simulation

5-68

Configure the camera to detect lanes. In the left pane, on the Sensors tab, expand the Detection
Parameters section. Then, set the Detection Type parameter to Lanes.

Generate Synthetic Detections
To generate lane detections from the camera, on the app toolstrip, click Run. As the scenario runs,
the Ego-Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye
Plot displays the left-lane and right-lane boundaries of the ego vehicle.

 Import OpenDRIVE Roads into Driving Scenario

5-69

To export the detections to the MATLAB workspace, on the app toolstrip, click Export > Export
Sensor Data. Name the workspace variable and click OK.

The Export > Export MATLAB Function option is disabled. If a scenario contains OpenDRIVE
roads, then you cannot export a MATLAB function that generates the scenario and its detections.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you can save the
sensor models as separate files. You can also save the road and actor models together as a separate
scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

When you reopen this file, the Add Road button remains disabled.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
the roads and actors from the scenario file into your model. Scenario files containing large
OpenDRIVE road networks can take up to several minutes to read into models.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors created in the app to a Simulink model, you can
generate a model containing your scenario and sensors by selecting Export > Export Simulink

5 Cuboid Driving Scenario Simulation

5-70

Model. In this model, a Scenario Reader block reads the scenario and Radar Detection Generator
and Vision Detection Generator blocks model the sensors.

References
[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H, Document No.

VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie GmbH, November 4, 2015.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Scenario Generation from Recorded Vehicle Data”

External Websites
• opendrive.org

 Import OpenDRIVE Roads into Driving Scenario

5-71

http://opendrive.org/

Import HERE HD Live Map Roads into Driving Scenario
HERE HD Live Map7 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. Using the Driving
Scenario Designer app, you can import map data from the HERE HDLM service and use it to
generate roads for your driving scenarios.

This example focuses on importing map data in the app. Alternatively, to import HERE HDLM roads
into a drivingScenario object, use the roadNetwork function.

Set Up HERE HDLM Credentials
To access the HERE HDLM web service, you need to enter valid HERE credentials obtained from
HERE Technologies. Set up these credentials by using the hereHDLMCredentials function. At the
MATLAB command prompt, enter:

hereHDLMCredentials setup

In the HERE HD Live Map Credentials dialog box, enter a valid App ID and App Code. To save your
credentials for future MATLAB sessions on your machine, in the dialog box, select Save my
credentials between MATLAB sessions and click OK. The credentials are now saved for the rest of
your MATLAB session on your machine.

If you need to change your credentials, you can delete them and set up new ones by using the
hereHDLMCredentials function.

Specify Geographic Coordinates
To select the roads you want to import, you need to specify a region of interest from which to obtain
the road data. To define this region of interest, specify latitude and longitude coordinates that are
near that road data. You can specify coordinates for a single point or a set of points, such as ones that
make up a driving route.

Specify the coordinates from a driving route.

1 Load a sequence of latitude and longitude coordinates that make up a driving route. At the
MATLAB command prompt, enter these commands:

data = load('geoSequence.mat');
lat = data.latitude;
lon = data.longitude;

2 Open the app.

drivingScenarioDesigner

3 On the app toolstrip, select Import > HERE HD Live Map. If you previously entered or saved
HERE credentials, then the dialog box opens directly to the page where you can specify
geographic coordinates.

7. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (app_id and app_code) for using the HERE Service.

5 Cuboid Driving Scenario Simulation

5-72

https://www.here.com

4 Leave From Workspace selected, and then select the variables for the route coordinates.

• Set the Latitude parameter to lat.
• Set the Longitude parameter to lon.

This table describes the complete list of options for specifying latitude and longitude coordinates.

 Import HERE HD Live Map Roads into Driving Scenario

5-73

Specify Geographic
Coordinates
Parameter Value

Description Latitude Parameter
Value

Longitude
Parameter Value

From Workspace Specify a set of
latitude and longitude
coordinates, such as
from a driving route
obtained through a
GPS. These
coordinates must be
stored as variables in
the MATLAB
workspace.

Workspace variables
containing vectors of
decimal values in the
range [–90, 90]. Units
are in degrees.

Latitude and
Longitude must be
the same size. After
you select a Latitude
variable, the
Longitude list
includes only
variables of the same
size as your Latitude
selection.

Workspace variables
containing vectors of
decimal values in the
range [–180, 180].
Units are in degrees.

Latitude and
Longitude must be
the same size. After
you select a
Longitude variable,
if you select a
Latitude variable of a
different size, the
dialog box clears your
Longitude selection.

Input Coordinates Specify latitude and
longitude coordinates
for a single
geographic point.

Decimal scalar in the
range [–90, 90]. Units
are in degrees.

Decimal scalar in the
range [–180, 180].
Units are in degrees.

Select Region Containing Roads
After you specify the latitude and longitude coordinates, the Select Region section of the dialog box
displays these coordinates in orange on a map. The coordinates are connected in a line. A rectangular
region of interest displays around the coordinates. In the next page of the dialog box, you select the
roads to import based on which roads are at least partially within this region.

5 Cuboid Driving Scenario Simulation

5-74

You can change the size of this region or move it around to select different roads. To zoom in and out
of the region, use the buttons in the top-right corner of the map display.

With the coordinates still enclosed within the region, click Next.

Select Roads to Import
After you select a region, the Select Roads section of the dialog box displays selectable roads in
black.

Using the selected region from the previous section, select the roads that are nearest to the driving
route by clicking Select Nearest Roads. The selected roads are overlaid onto the driving route and
appear in blue.

 Import HERE HD Live Map Roads into Driving Scenario

5-75

This table describes additional actions you can take for selecting roads from a region.

Goal Action
Select individual roads from the region. Click the individual roads to select them.
Select all roads from the region. Click Select All.
Select all but a few roads from the region. Click Select All, and then click the individual

roads to deselect them.
Select roads from the region that are nearest to
the specified coordinates.

Click Select Nearest Roads. Use this option
when you have a sequence of nonsparse
coordinates. If your coordinates are sparse or the
underlying HERE HDLM data for those
coordinates are sparse, then the app might not
select the nearest roads.

Select a subset of roads from a region, such as all
roads in the upper half of the region.

In the top-left corner of the map display, click the
Select Roads button . Then, draw a rectangle
around the roads to select.

• To deselect a subset of roads from this
selection, click the Deselect Roads button .
Then, draw a rectangle around the roads to
deselect.

• To deselect all roads and start over, click
Deselect All.

Note The number of roads you select has a direct effect on app performance. Select the fewest roads
that you need to create your driving scenario.

Import Roads
With the roads nearest to the route still selected, click Import. The app imports the HERE HDLM
roads and generates a road network.

5 Cuboid Driving Scenario Simulation

5-76

To maintain the same alignment with the geographic map display, the X-axis of the Scenario Canvas
is on the bottom and the Y-axis is on the left. In driving scenarios that are not imported from maps,
the X-axis is on the left and the Y-axis is on the bottom. This alignment is consistent with the
Automated Driving Toolbox world coordinate system.

The origin of the scenario is the first point specified in the driving route. Even if you select roads from
the end of a driving route, the origin is still anchored to this first point. If you specified a single
geographic point by using the Input Coordinates option, then the origin is that point.

By default, road interactions are disabled. Disabled road interactions prevent you from accidentally
modifying the network and reduces visual clutter by hiding the road centers. If you want to modify
the roads, in the bottom-left corner of the Scenario Canvas, click the Configure the Scenario Canvas
button . Then, select Enable road interactions.

Note In some cases, the app is unable to import all selected roads. This issue can occur if the
curvature of the road is too sharp for the app to render it properly. In these cases, the app pauses the
import, and the dialog box highlights the nonimportable roads in red. To continue importing all other
selected roads, click Continue.

 Import HERE HD Live Map Roads into Driving Scenario

5-77

Compare Imported Roads Against Map Data
The generated road network in the app has several differences from the actual HERE HDLM road
network. For example, the actual HERE HDLM road network contains roads with varying widths and
varying numbers of lanes. The Driving Scenario Designer app does not support these features.
Instead, the app sets each road to have the maximum width and the maximum number of lanes found
along its entire length. These changes increase the widths of the roads and causes roads to overlap
and appear as one road. Sensors that detect lanes are unable to detect the covered lanes.

This table shows the difference between a portion of the HERE HDLM road network and the imported
driving scenario.

HERE HDLM Road Network Imported Driving Scenario

Road networks generated from imported HERE HDLM data can have several differences from the
actual HERE HDLM road network. For more details on the unsupported HERE HDLM road and lane
features, see the “Limitations” section of the Driving Scenario Designer app reference page.

Save Scenario
Save the scenario file. After you save the scenario, you cannot import additional HERE HDLM roads
into it. Instead, you need to create a new scenario and import a new road network.

You can now add actors and sensors to the scenario, generate synthetic lane and object detections for
testing your driving algorithms, or import the scenario into Simulink.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

5 Cuboid Driving Scenario Simulation

5-78

Objects
drivingScenario

Functions
roadNetwork

More About
• “Access HERE HD Live Map Data” on page 4-7
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2

External Websites
• HERE Technologies

 Import HERE HD Live Map Roads into Driving Scenario

5-79

https://www.here.com

Create Driving Scenario Variations Programmatically
This example shows how to programmatically create variations of a driving scenario that was built
using the Driving Scenario Designer app. Programmatically creating variations of a scenario enables
you to rapidly test your driving algorithms under multiple conditions.

To create programmatic variations of a driving scenario, follow these steps:

1 Interactively build a driving scenario by using the Driving Scenario Designer app.
2 Export a MATLAB® function that generates the MATLAB code that is equivalent to this scenario.
3 In the MATLAB Editor, modify the exported function to create variations of the original scenario.
4 Call the function to generate a drivingScenario object that represents the scenario.
5 Import the scenario object into the app to simulate the modified scenario or generate additional

scenarios. Alternatively, to simulate the modified scenario in Simulink®, import the object into a
Simulink model by using a Scenario Reader block.

The diagram shows a visual representation of this workflow.

Before beginning this example, add the example file folder to the MATLAB search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Build Scenario in App

Use the Driving Scenario Designer to interactively build a driving scenario on which to test your
algorithms. For more details on building scenarios, see “Build a Driving Scenario and Generate
Synthetic Detections” on page 5-2.

This example uses a driving scenario that is based on one of the prebuilt scenarios that you can load
from the Driving Scenario Designer app.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenarioNoSensors.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and goes straight
through an intersection. Meanwhile, a vehicle coming from the left side of the intersection turns left
and ends up in front of the ego vehicle, in the adjacent lane.

5 Cuboid Driving Scenario Simulation

5-80

For simplicity, this scenario does not include sensors mounted on the ego vehicle.

Export MATLAB Function of Scenario

After you view and simulate the scenario, you can export the scenario to the MATLAB command line.
From the Driving Scenario Designer app toolstrip, select Export > Export MATLAB Function. The
exported function contains the MATLAB code used to produce the scenario created in the app. Open
the exported function.

open LeftTurnScenarioNoSensors.m

Calling this function returns these aspects of the driving scenario.

• scenario — Roads and actors of the scenarios, returned as a drivingScenario object.
• egoVehicle — Ego vehicle defined in the scenario, returned as a Vehicle object. For details,

see the vehicle function.

If your scenario contains sensors, then the returned function includes additional code for generating
the sensors. If you simulated the scenario containing those sensors, then the function can also
generate the detections produced by those sensors.

 Create Driving Scenario Variations Programmatically

5-81

Modify Function to Create Scenario Variations

By modifying the code in the exported MATLAB function, you can generate multiple variations of a
single scenario. One common variation is to test the ego vehicle at different speeds. In the exported
MATLAB function, the speed of the ego vehicle is set to a constant value of 10 meters per second
(speed = 10). To generate varying ego vehicle speeds, you can convert the speed variable into an
input argument to the function. Open the script containing a modified version of the exported
function.

open LeftTurnScenarioNoSensorsModified.m

In this modified function:

• egoSpeed is included as an input argument.
• speed, the constant variable, is deleted.
• To compute the ego vehicle trajectory, egoSpeed is used instead of speed.

This figure shows these script modifications.

To produce additional variations, consider:

• Modifying the road and lane parameters to view the effect on lane detections
• Modifying the trajectory or starting positions of the vehicles
• Modifying the dimensions of the vehicles

Call Function to Generate Programmatic Scenarios

Using the modified function, generate a variation of the scenario in which the ego vehicle travels at a
constant speed of 20 meters per second.

scenario = LeftTurnScenarioNoSensorsModified(20) % m/s

scenario =
 drivingScenario with properties:

 SampleTime: 0.0400
 StopTime: Inf
 SimulationTime: 0
 IsRunning: 1
 Actors: [1x2 driving.scenario.Vehicle]

5 Cuboid Driving Scenario Simulation

5-82

Import Modified Scenario into App

To import the modified scenario with the modified vehicle into the app, use the
drivingScenarioDesigner function. Specify the drivingScenario object as an input argument.

drivingScenarioDesigner(scenario)

Previously, the other vehicle passed through the intersection first. Now, with the speed of the ego
vehicle increased from 10 to 20 meters per second, the ego vehicle passes through the intersection
first.

When working with drivingScenario objects in the app, keep these points in mind.

• To try out different ego vehicle speeds, call the exported function again, and then import the new
drivingScenario object using the drivingScenarioDesigner function. The app does not
include a menu option for importing these objects.

• If your scenario includes sensors, you can reopen both the scenario and sensors by using this
syntax: drivingScenarioDesigner(scenario,sensors).

• If you make significant changes to the dimensions of an actor, be sure that the ClassID property
of the actor corresponds to a Class ID value specified in the app. For example, in the app, cars
have a Class ID of 1 and trucks have a Class ID of 2. If you programmatically change a car to
have the dimensions of a truck, update the ClassID property of that vehicle from 1 (car) to 2
(truck).

 Create Driving Scenario Variations Programmatically

5-83

Import Modified Scenario into Simulink

To import the modified scenario into a Simulink model, use a Scenario Reader block. This block reads
the roads and actors from either a scenario file saved from the app or a drivingScenario variable
saved to the MATLAB workspace or the model workspace. Add a Scenario Reader block to your model
and set these parameters.

1 Set Source of driving scenario to From workspace.
2 Set MATLAB or model workspace variable name to the name of the drivingScenario

variable in your workspace.

When working with drivingScenario objects in Simulink, keep these points in mind.

• When Source of ego vehicle is set to Scenario, the model uses the ego vehicle defined in your
drivingScenario object. The block determines which actor is the ego vehicle based on the
specified ActorID property of the actor. This actor must be a Vehicle object (see vehicle). To
change the designated ego vehicle, update the Ego vehicle ActorID parameter.

• When connecting the output actor poses to Radar Detection Generator or Vision Detection
Generator blocks, update these sensor blocks to obtain the actor profiles directly from the
drivingScenario object. By default, these blocks use the same set of actor profiles for all
actors, where the profiles are defined on the Actor Profiles tab of the blocks. To obtain the
profiles from the object, on the Actor Profiles tab of each sensor block, set the Select method to
specify actor profiles parameter to MATLAB expression. Then, set the MATLAB expression
for actor profiles parameter to call the actorProfiles function on the object. For example:
actorProfiles(scenario).

When you are done with this example, remove the example file folder from the MATLAB search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Functions
actorProfiles | vehicle

Objects
drivingScenario

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-14
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36
• “Driving Scenario Tutorial”

5 Cuboid Driving Scenario Simulation

5-84

Generate Sensor Detection Blocks Using Driving Scenario
Designer

This example shows how to update the radar and camera sensors of a Simulink® model by using the
Driving Scenario Designer app. The Driving Scenario Designer app enables you to generate multiple
sensor configurations quickly and interactively. You can then use these generated sensor
configurations in your existing Simulink models to test your driving algorithms more thoroughly.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect and Simulate Model

The model used in this example implements an autonomous emergency braking (AEB) sensor fusion
algorithm. For more details about this model, see the “Autonomous Emergency Braking with Sensor
Fusion” example. Open this model.

open_system('AEBTestBenchExample')

The driving scenario and sensor detection generators used to test the algorithm are located in the
Vehicle Environment > Actors and Sensor Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

 Generate Sensor Detection Blocks Using Driving Scenario Designer

5-85

A Scenario Reader block reads the actors and roads from the specified Driving Scenario Designer file.
The block outputs the non-ego actors. These actors are then passed to Radar Detection Generator
and Vision Detection Generator sensor blocks. During simulation, these blocks generate detections of
the non-ego actors.

Simulate and visualize the scenario on the Bird's-Eye Scope. On the model toolstrip, under Review
Results, click Bird's-Eye Scope. In the scope, click Find Signals, and then click Run to run the
simulation. In this scenario, the AEB model causes the ego vehicle to brake in time to avoid a collision
with a pedestrian child who is crossing the street.

5 Cuboid Driving Scenario Simulation

5-86

During this example, you replace the existing sensors in this model with new sensors created in the
Driving Scenario Designer app.

Load Scenario in App

The model uses a driving scenario that is based on one of the prebuilt Euro NCAP test protocol
scenarios. You can load these scenarios from the Driving Scenario Designer app. For more details on
these scenarios, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36.

Load the scenario file into the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

To simulate the scenario in the app, click Run. In the app simulation, unlike in the model simulation,
the ego vehicle collides with the pedestrian. The app uses a predefined ego vehicle trajectory,

 Generate Sensor Detection Blocks Using Driving Scenario Designer

5-87

whereas the model uses the AEB algorithm to control the trajectory and cause the ego vehicle to
brake.

Load Sensors

The loaded scenario file contains only the roads and actors in the scenario. A separate file contains
the sensors. To load these sensors into the scenario, on the app toolstrip, select Open > Sensors.
Open the AEBSensor.mat file located in the example folder. Alternatively, from your MATLAB root
folder, navigate to and open this file: matlabroot/examples/driving/AEBSensors.mat.

A radar sensor is mounted to the front bumper of the ego vehicle. A camera sensor is mounted to the
front window of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-88

Update Sensors

Update the radar and camera sensors by changing their locations on the ego vehicles.

1 On the Sensor Canvas, click and drag the radar sensor to the predefined Front Window
location.

2 Click and drag the camera sensor to the predefined Front Bumper location. At this predefined
location, the app updates the camera from a short-range sensor to a long-range sensor.

3 Optionally, in the left pane, on the Sensors tab, try modifying the parameters of the camera and
radar sensors. For example, you can change the detection probability or the accuracy and noise
settings.

4 Save a copy of this new scenario and sensor configuration to a writeable location.

For more details on working with sensors in the app, see “Build a Driving Scenario and Generate
Synthetic Detections” on page 5-2.

This image shows a sample updated sensor configuration.

 Generate Sensor Detection Blocks Using Driving Scenario Designer

5-89

Export Scenario and Sensors to Simulink

To generate Simulink blocks for the scenario and its sensors, on the app toolstrip, select Export >
Export Simulink Model. This model shows sample blocks that were exported from the app.

open_system('AEBGeneratedScenarioAndSensors')

5 Cuboid Driving Scenario Simulation

5-90

If you made no changes to the roads and actors in the scenario, then the Scenario Reader block reads
the same road and actor data that was used in the AEB model. The Radar Detection Generator and
Vision Detection Generator blocks model the radar and camera that you created in the app.

Copy Exported Scenario and Sensors into Existing Model

Replace the scenario and sensors in the AEB model with the newly generated scenario and sensors.
Even if you did not modify the roads and actors and read data from the same scenario file, replacing
the existing Scenario Reader block is still a best practice. Using this generated block keeps the bus
names for scenario and sensors consistent as data passes between them.

To get started, in the AEB model, reopen the Vehicle Environment > Actors and Sensor
Simulation subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

Next, to cope the scenario and sensor blocks with the generated ones, follow these steps:

1 Delete the existing Scenario Reader, Radar Detection Generator, and Vision Detection Generator
blocks. Do not delete the signal lines that are input to the Scenario Reader block or output from
the sensor blocks. Alternatively, disconnect these blocks without deleting them, and comment
them out of the model. Using this option, you can compare the existing blocks to the new one and
revert back if needed. Select each block. Then, on the Block tab, select Comment Out.

2 Copy the blocks from the generated model into the AEB model.
3 Open the copied-in Scenario Reader block and set the Source of ego vehicle parameter to

Input port. Click OK. The AEB model defines the ego vehicle in the Pack Ego Actor block,
which you connect to the Ego Vehicle port of the Scenario Reader block.

4 Connect the existing signal lines to the copied-in blocks. To clean up the layout of the model, on
the Format tab of the model, select Auto Arrange.

5 Verify that the updated subsystem block diagram resembles the pre-existing block diagram.
Then, save the model, or save a copy of the model to a writeable location.

Simulate Updated Model

To visualize the updated scenario simulation, reopen the Bird's-Eye Scope, click Find Signals, and
then click Run. With this updated sensor configuration, the ego vehicle does not brake in time.

 Generate Sensor Detection Blocks Using Driving Scenario Designer

5-91

To try different sensor configurations, reload the scenario and sensors in the app, export new
scenarios and sensors, and copy them into the AEB model.

When you are done simulating the model, remove the example file folder from the MATLAB search
path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36

5 Cuboid Driving Scenario Simulation

5-92

• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100
• “Autonomous Emergency Braking with Sensor Fusion”

 Generate Sensor Detection Blocks Using Driving Scenario Designer

5-93

Test Open-Loop ADAS Algorithm Using Driving Scenario
This example shows how to test an open-loop ADAS (advanced driver assistance system) algorithm in
Simulink®. In an open-loop ADAS algorithm, the ego vehicle behavior is predefined and does not
change as the scenario advances during simulation.

To test the scenario, you use a driving scenario that was saved from the Driving Scenario Designer
app. In this example, you read in a scenario using a Scenario Reader block, and then visually verify
the performance of sensor algorithms on the Bird's-Eye Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt scenarios that you can
access through the Driving Scenario Designer app. For more details on these scenarios, see “Prebuilt
Driving Scenarios in Driving Scenario Designer” on page 5-14.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenario.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and goes straight
through an intersection. Meanwhile, a vehicle coming from the left side of the intersection turns left
and ends up in front of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-94

The ego vehicle also includes a front-facing radar for generating object detections and front-facing
and rear-facing cameras for generating object and lane boundary detections.

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-95

Inspect Model

The model used in this example was generated from the app by selecting Export > Export Simulink
Model. In the model, a Scenario Reader block reads the actors and roads from the scenario file and
outputs the non-ego actors and lane boundaries. Open the model.

open_system('OpenLoopWithScenarios.slx')

In the Scenario Reader block, the Driving Scenario Designer file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB search path, such as
the scenario file used in this example, or the full path to a scenario file. Alternatively, you can specify
a drivingScenario object by setting Source of driving scenario to From workspace and then

5 Cuboid Driving Scenario Simulation

5-96

setting MATLAB or model workspace variable name to the name of a valid drivingScenario
object workspace variable.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario and the left-lane
and right-lane boundaries of the ego vehicle. To output all lane boundaries of the road on which the
ego vehicle is traveling, select the corresponding option for the Lane boundaries to output
parameter.

The actors and lane boundaries are passed to a subsystem containing the sensor blocks. Open the
subsystem.

open_system('OpenLoopWithScenarios/Detection Generators')

The Radar Detection Generator block accepts the actors as input. The Vision Detection Generator
block accepts the actors and lane boundaries as input. These sensor blocks produce synthetic
detections from the scenario. The outputs are in vehicle coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate system of
outputs parameter to World coordinates instead of Vehicle coordinates. In the world
coordinate system, the actors and lane boundaries are in the world coordinates of the driving
scenario. When this parameter is set to World coordinates, however, visualization of the scenario
using the Bird's-Eye Scope is not supported.

Because this model is open loop, the ego vehicle behavior does not change as the simulation
advances. Therefore, the Source of ego vehicle parameter is set to Scenario, and the block reads

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-97

the predefined ego vehicle pose and trajectory from the scenario file. For vehicle controllers and
other closed-loop models, set the Source of ego vehicle parameter to Input port. With this
option, you specify an ego vehicle that is defined in the model as an input to the Scenario Reader
block. For an example, see “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-
100.

Visually Verify Algorithm

To visualize the scenario and the object and lane boundary detections, use the Bird's-Eye Scope. From
the Simulink toolstrip, under Review Results, click Bird's-Eye Scope. Then, in the scope, click Find
Signals and run the simulation. The sensors generate detections for the non-ego actor and lane
boundaries.

Update Simulation Settings

This model uses the default simulation stop time of 10 seconds. However, because the scenario is only
about 5 seconds long, the simulation continues to run in the Bird's-Eye Scope even after the scenario

5 Cuboid Driving Scenario Simulation

5-98

has ended. To synchronize the simulation and scenario stop times, in the Simulink model toolbar, set
the simulation stop time to 5.2 seconds, which is the exact stop time of the app scenario. After you
run the simulation, the app displays this value in the bottom-right corner of the scenario canvas.

If the simulation runs too fast in the Bird's-Eye Scope, you can slow down the simulation by using
simulation pacing. From the Simulink toolstrip, select Run > Simulation Pacing. Select the Enable
pacing to slow down simulation check box and decrease the simulation time to slightly less than 1
second per wall-clock second, such as 0.8 seconds. Then, rerun the simulation in the Bird's-Eye
Scope.

When you are done with this example, remove the example file folder from the MATLAB search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-100
• “Create Driving Scenario Variations Programmatically” on page 5-80
• “Generate Sensor Detection Blocks Using Driving Scenario Designer” on page 5-85

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-99

Test Closed-Loop ADAS Algorithm Using Driving Scenario
This model shows how to test a closed-loop ADAS (advanced driver assistance system) algorithm in
Simulink®. In a closed-loop ADAS algorithm, the ego vehicle is controlled by changes in its scenario
environment as the simulation advances.

To test the scenario, you use a driving scenario that was saved from the Driving Scenario Designer
app. In this model, you read in a scenario using a Scenario Reader block, and then visually verify the
performance of the algorithm, an autonomous emergency braking (AEB) system, on the Bird's-Eye
Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt Euro NCAP test protocol
scenarios that you can access through the Driving Scenario Designer app. For more details on these
scenarios, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-36.

Open the scenario file in the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle collides with a pedestrian child
who is crossing the street.

5 Cuboid Driving Scenario Simulation

5-100

In the model used in this example, you use an AEB sensor fusion algorithm to detect the pedestrian
child and test whether the ego vehicle brakes in time to avoid a collision.

Inspect Model

The model implements the AEB algorithm described in the “Autonomous Emergency Braking with
Sensor Fusion” example. Open the model.

open_system('AEBTestBenchExample')

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-101

A Scenario Reader block reads the non-ego actors and roads from the specified scenario file and
outputs the non-ego actors. The ego vehicle is passed into the block through an input port.

The Scenario Reader block is located in the Vehicle Environment > Actors and Sensor
Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

5 Cuboid Driving Scenario Simulation

5-102

In the Scenario Reader block, the Driving Scenario Designer file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB search path, such as
the scenario file used in this example, or the full path to a scenario file. Alternatively, you can specify
a drivingScenario object by setting Source of driving scenario to From workspace and then
setting MATLAB or model workspace variable name to the name of a valid drivingScenario
object workspace variable. In closed-loop simulations, specifying the drivingScenario object is
useful because it enables you finer control over specifying the initial position of the ego vehicle in
your model.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario. These poses are
passed to vision and radar sensors, whose detections are used to determine the behavior of the AEB
controller.

The actor poses are output in vehicle coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate system of
outputs parameter to World coordinates instead of Vehicle coordinates. In the world
coordinate system, the actors and lane boundaries are in the world coordinates of the driving
scenario. When this parameter is set to World coordinates, however, visualization of the scenario
using the Bird's-Eye Scope is not supported.

Although this scenario includes a predefined ego vehicle, the Scenario Reader block is configured to
ignore this ego vehicle definition. Instead, the ego vehicle is defined in the model and specified as an
input to the Scenario Reader block (the Source of ego vehicle parameter is set to Input port). As
the simulation advances, the AEB algorithm determines the pose and trajectory of the ego vehicle. If

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-103

you are developing an open-loop algorithm, where the ego vehicle is predefined in the driving
scenario, set the Source of ego vehicle parameter to Scenario. For an example, see “Test Open-
Loop ADAS Algorithm Using Driving Scenario” on page 5-94.

Visually Verify Algorithm

To visualize the scenario, use the Bird's-Eye Scope. From the Simulink toolstrip, under Review
Results, click Bird's-Eye Scope. Then, in the scope, click Find Signals and run the simulation. With
the AEB algorithm, the ego vehicle brakes in time to avoid a collision.

When you are done verifying the algorithm, remove the example file folder from the MATLAB search
path.

5 Cuboid Driving Scenario Simulation

5-104

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

More About
• “Autonomous Emergency Braking with Sensor Fusion”
• “Lateral Control Tutorial”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-94
• “Create Driving Scenario Variations Programmatically” on page 5-80
• “Generate Sensor Detection Blocks Using Driving Scenario Designer” on page 5-85

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-105

3D Simulation – User's Guide

6

3D Simulation for Automated Driving
Automated Driving Toolbox provides a co-simulation framework that models driving algorithms in
Simulink and visualizes their performance in a 3D environment. This 3D simulation environment uses
the Unreal Engine from Epic Games.

Simulink blocks related to the 3D simulation environment can be found in the Automated Driving
Toolbox > Simulation 3D block library. These blocks provide the ability to:

• Configure prebuilt scenes in the 3D simulation environment.
• Place and move vehicles within these scenes.
• Set up camera, radar, and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the vehicle.
• Obtain ground truth data for semantic segmentation and depth information.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the performance of automated driving algorithms. In conjunction with a vehicle model, you
can use these blocks to perform realistic closed-loop simulations that encompass the entire
automated driving stack, from perception to control.

For more details on the simulation environment, see “How 3D Simulation for Automated Driving
Works” on page 6-8.

3D Simulation Blocks
To access the Automated Driving Toolbox > Simulation 3D library, at the MATLAB command
prompt, enter drivingsim3d.

Scenes

To configure a model to co-simulate with the 3D simulation environment, add a Simulation 3D Scene
Configuration block to the model. Using this block, you can choose from a set of prebuilt 3D scenes
where you can test and visualize your driving algorithms. The following image is from the Virtual
Mcity scene.

6 3D Simulation – User's Guide

6-2

The toolbox includes these scenes.

Scene Description
Straight Road Straight road segment
Curved Road Curved, looped road
Parking Lot Empty parking lot
Double Lane Change Straight road with barrels and traffic signs that

are set up for executing a double lane change
maneuver

Open Surface Flat, black pavement surface with no road objects
US City Block City block with intersections, barriers, and traffic

lights
US Highway Highway with cones, barriers, traffic lights, and

traffic signs
Large Parking Lot Parking lot with parked cars, cones, curbs, and

traffic signs
Virtual Mcity City environment that represents the University

of Michigan proving grounds (see Mcity Test
Facility); includes cones, barriers, an animal,
traffic lights, and traffic signs

If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package,
then you can modify these scenes or create new ones. For more details, see “Customize 3D Scenes for
Automated Driving” on page 6-43.

 3D Simulation for Automated Driving

6-3

https://mcity.umich.edu/our-work/mcity-test-facility/
https://mcity.umich.edu/our-work/mcity-test-facility/

Vehicles

To define a virtual vehicle in a scene, add a Simulation 3D Vehicle with Ground Following block to
your model. Using this block, you can control the movement of the vehicle by supplying the X, Y, and
yaw values that define its position and orientation at each time step. The vehicle automatically moves
along the ground.

You can also specify the color and type of vehicle. The toolbox includes these vehicle types:

• Box Truck
• Hatchback
• Muscle Car
• Sedan
• Small Pickup Truck
• Sport Utility Vehicle

Sensors

You can define virtual sensors and attach them at various positions on the vehicles. The toolbox
includes these sensor modeling and configuration blocks.

Block Description
Simulation 3D Camera Camera model with lens. Includes parameters for

image size, focal length, distortion, and skew.
Simulation 3D Fisheye Camera Fisheye camera that can be described using the

Scaramuzza camera model. Includes parameters
for distortion center, image size, and mapping
coefficients.

Simulation 3D Lidar Scanning lidar sensor model. Includes
parameters for detection range, resolution, and
fields of view.

Simulation 3D Probabilistic Radar Probabilistic radar model that returns a list of
detections. Includes parameters for radar
accuracy, radar bias, detection probability, and
detection reporting. It does not simulate radar at
an electromagnetic wave propagation level.

Simulation 3D Probabilistic Radar Configuration Configures radar signatures for all actors
detected by the Simulation 3D Probabilistic
Radar blocks in a model.

For more details on choosing a sensor, see “Choose a Sensor for 3D Simulation” on page 6-16.

Algorithm Testing and Visualization
Automated Driving Toolbox 3D simulation blocks provide the tools for testing and visualizing path
planning, vehicle control, and perception algorithms.

Path Planning and Vehicle Control

You can use the 3D simulation environment to visualize the motion of a vehicle in a prebuilt scene.
This environment provides you with a way to analyze the performance of path planning and vehicle

6 3D Simulation – User's Guide

6-4

control algorithms. After designing these algorithms in Simulink, you can use the drivingsim3d
library to visualize vehicle motion in one of the prebuilt scenes.

For an example of path planning and vehicle control algorithm visualization, see “Visualize
Automated Parking Valet Using 3D Simulation”.

Perception

Automated Driving Toolbox provides several blocks for detailed camera, radar, and lidar sensor
modeling. By mounting these sensors on vehicles within the virtual environment, you can generate
synthetic sensor data or sensor detections to test the performance of your sensor models against
perception algorithms.

• For an example of building a lidar perception algorithm using synthetic sensor data from the 3D
simulation environment, see “Simulate Lidar Sensor Perception Algorithm”.

• For an example of generating radar detections, see “Simulate Radar Sensors in 3D Environment”.

You can also output and visualize ground truth data to validate depth estimation algorithms and train
semantic segmentation networks. For an example, see “Visualize Depth and Semantic Segmentation
Data in 3D Environment” on page 6-30.

Closed-Loop Systems

After you design and test a perception system within the 3D simulation environment, you can then
use it to drive a control system that actually steers a vehicle. In this case, rather than manually set up
a trajectory, the vehicle uses the perception system to drive itself. By combining perception and
control into a closed-loop system in the 3D simulation environment, you can develop and test more
complex algorithms, such as lane keeping assist and adaptive cruise control.

For an example of a closed-loop system in the 3D environment, see “Highway Lane Following”.

See Also

More About
• “3D Simulation Environment Requirements and Limitations” on page 6-6
• “Simulate a Simple Driving Scenario and Sensor in 3D Environment” on page 6-21
• “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-10
• “Customize 3D Scenes for Automated Driving” on page 6-43

 3D Simulation for Automated Driving

6-5

3D Simulation Environment Requirements and Limitations
Automated Driving Toolbox provides an interface to a 3D simulation environment that is visualized
using the Unreal Engine from Epic Games. Version 4.23 of this visualization engine comes installed
with Automated Driving Toolbox. When simulating in the 3D environment, keep these requirements
and limitations in mind.

Software Requirements
• Windows® 64-bit platform
• Visual Studio® 2017 or newer (for customizing scenes)
• Microsoft® DirectX® — If this software is not already installed on your machine and you try to

simulate in the 3D environment, Automated Driving Toolbox prompts you to install it. Once you
install the software, you must restart the simulation.

In you are customizing scenes, verify that your Unreal Engine project is compatible with the Unreal
Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version
R2019b 4.19
R2020a 4.23

Note Mac and Linux® platforms are not supported.

Minimum Hardware Requirements
• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The 3D simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple instances of the 3D simulation environment
• Parallel simulations
• Rapid accelerator mode

In addition, when using these blocks in a closed-loop simulation, all 3D simulation environment blocks
must be in the same subsystem.

See Also
Simulation 3D Scene Configuration

6 3D Simulation – User's Guide

6-6

More About
• “3D Simulation for Automated Driving” on page 6-2
• “How 3D Simulation for Automated Driving Works” on page 6-8

External Websites
• Unreal Engine

 3D Simulation Environment Requirements and Limitations

6-7

https://www.unrealengine.com/en-US/what-is-unreal-engine-4

How 3D Simulation for Automated Driving Works
Automated Driving Toolbox provides a co-simulation framework that you can use to model driving
algorithms in Simulink and visualize their performance in a 3D environment. This 3D simulation
environment uses the Unreal Engine by Epic Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment
When you use Automated Driving Toolbox to run your algorithms, Simulink co-simulates the
algorithms in the visualization engine.

In the Simulink environment, Automated Driving Toolbox:

• Configures the 3D visualization environment, specifically the ray tracing, scene capture from
cameras, and initial object positions

• Determines the next position of the objects by using the 3D simulation environment feedback

The diagram summarizes the communication between Simulink and the visualization engine.

Block Execution Order
During simulation, the 3D simulation blocks follow a specific execution order:

1 The Simulation 3D Vehicle with Ground Following blocks initialize the vehicles and send their X,
Y, and Yaw signal data to the Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.

The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
Vehicle with Ground Following blocks have a priority of -1, Simulation 3D Scene Configuration blocks
have a priority of 0, and sensor blocks have a priority of 1.

The diagram shows this execution order.

6 3D Simulation – User's Guide

6-8

If your sensors are not detecting vehicles in the scene, it is possible that the 3D simulation blocks are
executing out of order. Try updating the execution order and simulating again. For more details on
execution order, see “Control and Display Execution Order” (Simulink).

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

More About
• “3D Simulation for Automated Driving” on page 6-2
• “3D Simulation Environment Requirements and Limitations” on page 6-6
• “Choose a Sensor for 3D Simulation” on page 6-16
• “Coordinate Systems for 3D Simulation in Automated Driving Toolbox” on page 6-10

 How 3D Simulation for Automated Driving Works

6-9

Coordinate Systems for 3D Simulation in Automated Driving
Toolbox

Automated Driving Toolbox enables you to simulate your driving algorithms in a 3D environment that
uses the Unreal Engine from Epic Games. In general, the coordinate systems used in this
environment follow the conventions described in “Coordinate Systems in Automated Driving Toolbox”
on page 1-2. However, when simulating in this environment, it is important to be aware of the specific
differences and implementation details of the 3D simulation coordinate systems.

World Coordinate System
As with other Automated Driving Toolbox functionality, the 3D simulation environment uses the right-
handed Cartesian world coordinate system defined in ISO 8855. The following 2D top-view image of
the Virtual Mcity scene shows the X- and Y-coordinates of the scene.

6 3D Simulation – User's Guide

6-10

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left. The positive Z-axis points from the ground up. The yaw, pitch, and roll angles are
clockwise-positive, when looking in the positive directions of the Z-, Y-, and X-axes, respectively. If
you view a scene from a 2D top-down perspective, then the yaw angle is counterclockwise-positive,
because you are viewing the scene in the negative direction of the Z-axis.

 Coordinate Systems for 3D Simulation in Automated Driving Toolbox

6-11

Placing Vehicles in a Scene

Vehicles are placed in the world coordinate system of the scenes. The figure shows how specifying the
X, Y, and Yaw ports in the Simulation 3D Vehicle with Ground Following blocks determines their
placement in a scene.

The elevation and banking angle of the ground determine the Z-axis, roll angle, and pitch angle of the
vehicles.

Difference from Unreal Editor World Coordinates

The Unreal® Editor uses a left-handed world Cartesian coordinate system in which the positive Y-axis
points right. If you are converting from the Unreal Editor coordinate system to the coordinate system
of the 3D environment, you must flip the sign of the Y-axis and pitch angle. The X-axis, Z-axis, roll
angle, and yaw angle are the same in both coordinate systems.

Vehicle Coordinate System
The vehicle coordinate system is based on the world coordinate system. In this coordinate system:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle.
• The Z-axis points up from the ground.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and

Z-axes, respectively. As with the world coordinate system, when looking at a vehicle from the top
down, then the yaw angle is counterclockwise-positive.

The vehicle origin is on the ground, at the geometric center of the vehicle. In this figure, the blue dot
represents the vehicle origin.

6 3D Simulation – User's Guide

6-12

Mounting Sensors on a Vehicle

When you add a sensor block, such as a Simulation 3D Camera block, to your model, you can mount
the sensor to a predefined vehicle location, such as the front bumper of the root center. These
mounting locations are in the vehicle coordinate system. When you specify an offset from these
locations, you offset from the origin of the mounting location, not from the vehicle origin.

These equations define the vehicle coordinates for a sensor with location (X, Y, Z) and orientation
(Roll, Pitch, Yaw):

• (X, Y, Z) = (Xmount + Xoffset, Ymount + Yoffset, Zmount + Zoffset)
• (Roll, Pitch, Yaw) = (Rollmount + Rolloffset, Pitchmount + Pitchoffset, Yawmount + Yawoffset)

The "mount" variables refer to the predefined mounting locations relative to the vehicle origin. You
define these mounting locations in the Mounting location parameter of the sensor block.

The "offset" variables refer to the amount of offset from these mounting locations. You define these
offsets in the Relative translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg)
parameters of the sensor block.

For example, consider a sensor mounted to the Rear bumper location. Relative to the vehicle origin,
the sensor has an orientation of (0, 0, 180). In other words, when looking at the vehicle from the top
down, the yaw angle of the sensor is rotated counterclockwise 180 degrees.

 Coordinate Systems for 3D Simulation in Automated Driving Toolbox

6-13

To point the sensor 90 degrees further to the right, you need to set the Relative rotation [Roll,
Pitch, Yaw] (deg) parameter to [0,0,90]. In other words, the sensor is rotated 270 degrees
counterclockwise relative to the vehicle origin, but it is rotated only 90 degrees counterclockwise
relative to the origin of the predefined rear bumper location.

Difference from Cuboid Vehicle Origin

In the cuboid simulation environment, as described in “Cuboid Driving Scenario Simulation”, the
origin is on the ground, below the center of the rear axle of the vehicle.

6 3D Simulation – User's Guide

6-14

Cuboid Vehicle Origin 3D Simulation Vehicle Origin

If you are converting sensor positions between coordinate systems, then you need to account for this
difference in origin by using a Cuboid To 3D Simulation block. For an example model that uses this
block, see “Highway Lane Following”.

Difference from Unreal Editor Vehicle Coordinates

The Unreal Editor uses a left-handed Cartesian vehicle coordinate system in which the positive Y-axis
points right. If you are converting from the Unreal Editor coordinate system to the coordinate system
of the 3D environment, you must flip the sign of the Y-axis and pitch angle. The X-axis, Z-axis, roll
angle, and yaw angle are the same in both coordinate systems.

See Also
Cuboid To 3D Simulation | Simulation 3D Vehicle with Ground Following

More About
• “How 3D Simulation for Automated Driving Works” on page 6-8
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics Blockset)

 Coordinate Systems for 3D Simulation in Automated Driving Toolbox

6-15

Choose a Sensor for 3D Simulation
You can use the 3D simulation environment in Automated Driving Toolbox to obtain high-fidelity
sensor data. This environment is rendered using the Unreal Engine from Epic Games.

The table summarizes the sensor blocks that you can simulate in this environment.

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Camera

• Camera
with
lens
that is
based
on the
ideal
pinhole
camera
. See
“What
Is
Camera
Calibra
tion?”
(Compu
ter
Vision
Toolbox
)

• Include
s
parame
ters for
image
size,
focal
length,
distorti
on, and
skew

• Include
s
options
to
output
ground
truth
for
depth
estimat
ion and

Display camera images by using a Video Viewer or
To Video Display block. Sample visualization:

“Design of Lane
Marker Detector
in 3D Simulation
Environment”

Display depth maps by using a Video Viewer or To
Video Display block. Sample visualization:

“Visualize Depth
and Semantic
Segmentation
Data in 3D
Environment” on
page 6-30

6 3D Simulation – User's Guide

6-16

Sensor Block Descripti
on

Visualization Example

semanti
c
segmen
tation

Display semantic segmentation maps by using a
Video Viewer or To Video Display block. Sample
visualization:

“Visualize Depth
and Semantic
Segmentation
Data in 3D
Environment” on
page 6-30

 Choose a Sensor for 3D Simulation

6-17

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Fisheye Camera

• Fisheye
camera
that
can be
describ
ed
using
the
Scaram
uzza
camera
model.
See
“Fishey
e
Calibra
tion
Basics”
(Compu
ter
Vision
Toolbox
)

• Include
s
parame
ters for
distorti
on
center,
image
size,
and
mappin
g
coeffici
ents

Display camera images by using a Video Viewer or
To Video Display block. Sample visualization:

“Simulate a
Simple Driving
Scenario and
Sensor in 3D
Environment” on
page 6-21

6 3D Simulation – User's Guide

6-18

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Lidar

• Scanni
ng lidar
sensor
model

• Include
s
parame
ters for
detecti
on
range,
resoluti
on, and
fields of
view

Display point cloud data by using pcplayer
within a MATLAB Function block. Sample
visualization:

“Simulate Lidar
Sensor
Perception
Algorithm”

Display lidar coverage areas and detections by
using the Bird's-Eye Scope. Sample visualization:

“Visualize 3D
Simulation
Sensor
Coverages and
Detections” on
page 6-35

 Choose a Sensor for 3D Simulation

6-19

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Probabilistic
Radar

• Probabi
listic
radar
model
that
returns
a list of
detecti
ons

• Include
s
parame
ters for
radar
accurac
y, radar
bias,
detecti
on
probabi
lity, and
detecti
on
reporti
ng

Display radar coverage areas and detections by
using the Bird's-Eye Scope. Sample visualization:

“Simulate Radar
Sensors in 3D
Environment”

“Visualize 3D
Simulation
Sensor
Coverages and
Detections” on
page 6-35

See Also
Blocks
Simulation 3D Probabilistic Radar Configuration | Simulation 3D Scene Configuration | Simulation 3D
Vehicle with Ground Following

More About
• “3D Simulation for Automated Driving” on page 6-2

6 3D Simulation – User's Guide

6-20

Simulate a Simple Driving Scenario and Sensor in 3D
Environment

Automated Driving Toolbox™ provides blocks for visualizing sensors in a 3D simulation environment
that uses the Unreal Engine® from Epic Games®. This model simulates a simple driving scenario in a
prebuilt 3D scene and captures data from the scene using a fisheye camera sensor. Use this model to
learn the basics of configuring and simulating scenes, vehicles, and sensors. For more background on
the 3D simulation environment, see “3D Simulation for Automated Driving” on page 6-2.

Model Overview

The model consists of these main components:

• Scene — A Simulation 3D Scene Configuration block configures the scene in which you simulate.
• Vehicles — Two Simulation 3D Vehicle with Ground Following blocks configure the vehicles within

the scene and specify their trajectories.
• Sensor — A Simulation 3D Fisheye Camera configures the mounting position and parameters of

the fisheye camera used to capture simulation data. A Video Viewer block visualizes the simulation
output of this sensor.

 Simulate a Simple Driving Scenario and Sensor in 3D Environment

6-21

Inspect Scene

In the Simulation 3D Scene Configuration block, the Scene name parameter determines the scene
where the simulation takes place. This model uses the Large Parking Lot scene, but you can choose
among several prebuilt scenes. To explore a scene, you can open the 2D image corresponding to the
3D scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.LargeParkingLot;
figure; imshow('sim3d_LargeParkingLot.jpg',spatialRef)
set(gca,'YDir','normal')

To learn how to explore other scenes, see the corresponding scene reference pages.

6 3D Simulation – User's Guide

6-22

The Scene view parameter of this block determines the view from which the Unreal Engine window
displays the scene. In this block, Scene view is set to EgoVehicle, which is the name of the ego
vehicle (the vehicle with the sensor) in this scenario. During simulation, the Unreal Engine window
displays the scene from behind the ego vehicle. You can also change the scene view to the other
vehicle. To display the scene from the root of the scene (the scene origin), select root.

Inspect Vehicles

The Simulation 3D Vehicle with Ground Following blocks model the vehicles in the scenario.

• The Ego Vehicle block vehicle contains the fisheye camera sensor. This vehicle is modeled as a red
hatchback.

• The Target Vehicle block is the vehicle from which the sensor captures data. This vehicle is
modeled as a green SUV.

During simulation, both vehicles travel straight in the parking lot for 50 meters. The target vehicle is
10 meters directly in front of the ego vehicle.

 Simulate a Simple Driving Scenario and Sensor in 3D Environment

6-23

The X, Y, and Yaw input ports control the trajectories of these vehicles. X and Y are in the world
coordinates of the scene, which are in meters. Yaw is the orientation angle of the vehicle and is in
degrees.

The ego vehicle travels from a position of (45,0) to (45,50), oriented 90 degrees counterclockwise
from the origin. To model this position, the input port values are as follows:

• X is a constant value of 45.
• Y is a multiple of the simulation time. A Digital Clock block outputs the simulation time every 0.1

second for 5 seconds, which is the stop time of the simulation. These simulation times are then
multiplied by 10 to produce Y values of [0 1 2 3 ... 50], or 1 meter for up to a total of 50
meters.

6 3D Simulation – User's Guide

6-24

• Yaw is a constant value of 90.

The target vehicle has the same X and Yaw values as the ego vehicle. The Y value of the target
vehicle is always 10 meters more than the Y value of the ego vehicle.

In both vehicles, the Initial position [X, Y, Z] (m) and Initial rotation [Roll, Pitch, Yaw] (deg)
parameters reflect the initial [X, Y, Z] and [Yaw, Pitch, Roll] values of the vehicles at the
beginning of simulation.

To create more realistic trajectories, you can obtain waypoints from a scene interactively and specify
these waypoints as inputs to the Simulation 3D Vehicle with Ground Following blocks. See “Select
Waypoints for 3D Simulation”.

Inspect Sensor

The Simulation 3D Fisheye Camera block models the sensor used in the scenario. Open this block and
inspect its parameters.

• The Mounting tab contains parameters that determine the mounting location of the sensor. The
fisheye camera sensor is mounted to the center of the roof of the ego vehicle.

• The Parameters tab contains the intrinsic camera parameters of a fisheye camera. These
parameters are set to their default values.

• The Ground Truth tab contains a parameter for outputting the location and orientation of the
sensor in meters and radians. In this model, the block outputs these values so you can see how
they change during simulation.

The block outputs images captured from the simulation. During simulation, the Video Viewer block
displays these images.

Simulate Model

Simulate the model. When the simulation begins, it can take a few seconds for the visualization
engine to initialize, especially when you are running it for the first time. The AutoVrtlEnv window
shows a view of the scene in the 3D environment.

 Simulate a Simple Driving Scenario and Sensor in 3D Environment

6-25

The Video Viewer block shows the output of the fisheye camera.

6 3D Simulation – User's Guide

6-26

To change the view of the scene during simulation, use the numbers 1–9 on the numeric keypad.

 Simulate a Simple Driving Scenario and Sensor in 3D Environment

6-27

For a bird's-eye view of the scene, press 0.

After simulating the model, try modifying the intrinsic camera parameters and observe the effects on
simulation. You can also change the type of sensor block. For example, try substituting the 3D
Simulation Fisheye Camera with a 3D Simulation Camera block. For more details on the available
sensor blocks, see “Choose a Sensor for 3D Simulation” on page 6-16.

See Also
Simulation 3D Camera | Simulation 3D Fisheye Camera | Simulation 3D Lidar | Simulation 3D
Probabilistic Radar | Simulation 3D Vehicle with Ground Following | Simulation 3D Scene
Configuration

More About
• “3D Simulation for Automated Driving” on page 6-2
• “3D Simulation Environment Requirements and Limitations” on page 6-6
• “How 3D Simulation for Automated Driving Works” on page 6-8
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

6 3D Simulation – User's Guide

6-28

• “Select Waypoints for 3D Simulation”
• “Design of Lane Marker Detector in 3D Simulation Environment”

 Simulate a Simple Driving Scenario and Sensor in 3D Environment

6-29

Visualize Depth and Semantic Segmentation Data in 3D
Environment

This example shows how to visualize depth and semantic segmentation data captured from a camera
sensor in the Automated Driving Toolbox™ 3D simulation environment. This 3D environment uses the
Unreal Engine® from Epic Games®.

You can use depth visualizations to validate depth estimation algorithms for your sensors. You can use
semantic segmentation visualizations to analyze the classification scheme used for generating
synthetic semantic segmentation data from the 3D environment.

Model Setup

The model used in this example simulates a vehicle driving in a city scene.

• A Simulation 3D Scene Configuration block sets up simulation with the US City Block scene.
• A Simulation 3D Vehicle with Ground Following block specifies the driving route of the vehicle.

The waypoint poses that make up this route were obtained using the technique described in the
“Select Waypoints for 3D Simulation” example.

• A Simulation 3D Camera block mounted to the rearview mirror of the vehicle captures data from
the driving route. This block outputs the camera, depth, and semantic segmentation displays by
using To Video Display blocks.

Load the MAT-file containing the waypoint poses. Add timestamps to the poses and then open the
model.

load smoothedPoses.mat;

refPosesX = [linspace(0,20,1000)', smoothedPoses(:,1)];
refPosesY = [linspace(0,20,1000)', smoothedPoses(:,2)];
refPosesYaw = [linspace(0,20,1000)', smoothedPoses(:,3)];

open_system('DepthSemanticSegmentation.slx')

6 3D Simulation – User's Guide

6-30

Depth Visualization

A depth map is a grayscale representation of camera sensor output. These maps visualize camera
images in grayscale, with brighter pixels indicating objects that are farther away from the sensor. You
can use depth maps to validate depth estimation algorithms for your sensors.

The Depth port of the Simulation 3D Camera block outputs a depth map of values in the range of 0 to
1000 meters. In this model, for better visibility, a Saturation block saturates the depth output to a
maximum of 150 meters. Then, a Gain block scales the depth map to the range [0, 1] so that the To
Video Display block can visualize the depth map in grayscale.

Semantic Segmentation Visualization

Semantic segmentation describes the process of associating each pixel of an image with a class label,
such as road, building, or traffic sign. In the 3D simulation environment, you generate synthetic
semantic segmentation data according to a label classification scheme. You can them use these labels
to train a neural network for automated driving applications, such as road segmentation. By
visualizing the semantic segmentation data, you can verify your classification scheme.

The Labels port of the Simulation 3D Camera block outputs a set of labels for each pixel in the
output camera image. Each label corresponds to an object class. For example, in the default
classification scheme used by the block, 1 corresponds to buildings. A label of 0 refers to objects of
an unknown class and appears as black. For a complete list of label IDs and their corresponding
object descriptions, see the Labels port description on the Simulation 3D Camera block reference
page.

The MATLAB Function block uses the label2rgb function to convert the labels to a matrix of RGB
triplets for visualization. The colormap is based on the colors used in the CamVid dataset, as shown in
the example “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox). The colors
are mapped to the predefined label IDs used in the default 3D simulation scenes. The helper function
sim3dColormap defines the colormap. Inspect these colormap values.

open sim3dColormap.m

Model Simulation

Run the model.

 Visualize Depth and Semantic Segmentation Data in 3D Environment

6-31

sim('DepthSemanticSegmentation.slx');

When the simulation begins, it can take a few seconds for the visualization engine to initialize,
especially when you are running it for the first time. The AutoVrtlEnv window displays the scene
from behind the ego vehicle. In this scene, the vehicles drives several blocks around the city. Because
this example is mainly for illustrative purposes, the vehicle does not always follow the direction of
traffic or the pattern of the changing traffic lights.

The Camera Display, Depth Display, and Semantic Segmentation Display blocks display the outputs
from the camera sensor.

6 3D Simulation – User's Guide

6-32

 Visualize Depth and Semantic Segmentation Data in 3D Environment

6-33

To change the visualization range of the output depth data, try updating the values in the Saturation
and Gain blocks.

To change the semantic segmentation colors, try modifying the color values defined in the
sim3dColormap function. Alternatively, in the sim3dlabel2rgb MATLAB Function block, try
replacing the input colormap with your own colormap or a predefined colormap. See colormap.

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground
Following

More About
• “Simulate a Simple Driving Scenario and Sensor in 3D Environment” on page 6-21
• “Select Waypoints for 3D Simulation”
• “Semantic Segmentation Using Deep Learning” (Computer Vision Toolbox)

6 3D Simulation – User's Guide

6-34

Visualize 3D Simulation Sensor Coverages and Detections
This example shows how to visualize sensor coverages and detections obtained from high-fidelity
radar and lidar sensors in a 3D simulation environment. In this example, you learn how to:

1 Configure Simulink® models to simulate within the 3D environment. This environment is
rendered using the Unreal Engine® from Epic Games®.

2 Read ground truth data and vehicle trajectories from a scenario authored using the Driving
Scenario Designer app, and then recreate this scenario in the Simulink model.

3 Add radar and lidar sensors to these models by using Simulation 3D Probabilistic Radar and
Simulation 3D Lidar blocks.

4 Visualize the driving scenario and generated sensor data in the Bird's-Eye Scope.

You can use these visualizations and sensor data to test and improve your automated driving
algorithms. You can also extend this example to fuse detections and visualize object tracking results,
as shown in the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” example.

Inspect Cuboid Driving Scenario

In this example, the ground truth (roads, lanes, and actors) and vehicle trajectories come from a
scenario that was authored in the Driving Scenario Designer app. In this app, vehicles and other
actors are represented as simple box shapes called cuboids. For more details about authoring cuboid
scenarios, see the “Build a Driving Scenario and Generate Synthetic Detections” on page 5-2
example.

Open the cuboid driving scenario file in the app.

drivingScenarioDesigner('StraightRoadScenario.mat')

In the app, run the scenario simulation. In this scenario, the ego vehicle (a blue car) travels north
along a straight road at a constant speed. In the adjacent lane, an orange car travels north at a
slightly higher constant speed. In the opposite lane, a yellow truck drives south at a constant speed.

 Visualize 3D Simulation Sensor Coverages and Detections

6-35

When authoring driving scenarios that you later recreate in the 3D simulation environment, you must
use a road network identical to one from the default 3D scenes. Otherwise, in the recreated scenario,
the positions of vehicles and sensors are inaccurate. This driving scenario uses a recreation of the
Straight Road scene. To select a different cuboid version of a 3D scene, on the app toolstrip, select
Open > Prebuilt Scenario > Simulation3D and choose from the available scenes. Not all 3D
scenes have corresponding versions in the app.

• For a list of supported scenes and additional details about each scene, see “Cuboid Versions of 3D
Simulation Scenes in Driving Scenario Designer” on page 5-55.

• To generate vehicle trajectories for scenes that are not available in the app, use the process
described in the “Select Waypoints for 3D Simulation” example instead.

The dimensions of vehicles in the cuboid scenarios must also match the dimensions of one of the
predefined 3D simulation vehicle types. On the app toolstrip, under 3D Display, the Use 3D
Simulation Actor Dimensions selection sets each cuboid vehicle to have the dimensions of a 3D
vehicle type. In this scenario, the vehicles have these 3D display types and corresponding vehicle
dimensions.

• Ego Vehicle — Sedan vehicle dimensions
• Vehicle in Adjacent Lane — Muscle Car vehicle dimensions
• Vehicle in Opposite Lane — Box Truck vehicle dimensions

6 3D Simulation – User's Guide

6-36

To change a vehicle to a different display type, on the Actors tab in the left pane of the app, update
the 3D Display Type parameter for that vehicle. To change the color of a vehicle, select the color
patch next to the selected vehicle and choose a new color.

To preview how the vehicles display in the 3D environment, use the 3D display window available from
the app. On the app toolstrip, select 3D Display > View Simulation in 3D Display and rerun the
simulation.

Open 3D Simulation Model

The model used in this example recreates the cuboid driving scenario. The model also defines high-
fidelity sensors that generate synthetic detections from the environment. Open the model.

open_system('Visualize3DSimulationSensorCoveragesDetections')

 Visualize 3D Simulation Sensor Coverages and Detections

6-37

Inspect Scene Configuration

The Simulation 3D Scene Configuration block configures the model to simulate in the 3D
environment.

• The Scene name parameter is set to the default Straight road scene. This scene corresponds
to the cuboid version defined in the app scenario file.

• The Scene view parameter is set to Ego Vehicle. During simulation, the 3D simulation window
displays the scene from behind the ego vehicle.

The Scenario Reader block reads the ground truth data (road boundaries, lane markings, and actor
poses) from the app scenario file. The Bird's-Eye Scope visualizes this ground truth data, not the
ground truth data of the 3D simulation environment. To use the same scene for the cuboid and 3D
simulation environments, the ground truth data for both environments must match. If you are
creating a new scenario, you can generate a Scenario Reader block that reads data from your
scenario file. First, open the scenario file in the Driving Scenario Designer app. Then, on the app
toolstrip, select Export > Export Simulink Model. If you update the scenario, you do not need to
generate a new Scenario Reader block.

The Simulation 3D Scene Configuration block and Scenario Reader block both have their Sample
time parameter set to 0.1. In addition, all other 3D simulation vehicle and sensor blocks inherit their
sample time from the Simulation 3D Scene Configuration block. By setting a single sample time
across the entire model, the Bird's-Eye Scope displays data from all blocks at a constant rate. If the
ground truth and sensor data have different sample times, then the scope visualizes them at different
time intervals. This process causes the ground truth and sensor data visualizations to flicker.

6 3D Simulation – User's Guide

6-38

Inspect Vehicle Configuration

The Simulation 3D Vehicle with Ground Following blocks specify the appearances and trajectories of
the vehicles in the 3D simulation environment. Each vehicle is a direct counterpart to one of the
vehicles defined in the Driving Scenario Designer app scenario file.

In the 3D environment, vehicle positions are in world coordinates. However, the Scenario Reader
block outputs the poses of non-ego actors in ego vehicle coordinates. A Vehicle To World block
converts these non-ego actor poses into world coordinates. Because the ego vehicle is output in world
coordinates, this conversion is not necessary for the ego vehicle. For more details about the vehicle
and world coordinate systems, see “Coordinate Systems in Automated Driving Toolbox” on page 1-2.

Locations of vehicle origins differ between cuboid and 3D scenarios.

• In cuboid scenarios, the vehicle origin is on the ground, at the center of the rear axle.
• In 3D scenarios, the vehicle origin is on ground, at the geometric center of the vehicle.

The Cuboid To 3D Simulation blocks convert the cuboid origin positions to the 3D simulation origin
positions. In the ActorID used for conversion parameters of these blocks, the specified ActorID of
each vehicle determines which vehicle origin to convert. The Scenario Reader block outputs ActorID
values in its Actors output port. In the Driving Scenario Designer app, you can find the
corresponding ActorID values on the Actors tab, in the actor selection list. The ActorID for each
vehicle is the value that precedes the colon.

Each Cuboid To 3D Simulation block outputs X, Y, and Yaw values that feed directly into their
corresponding vehicle blocks. In the 3D simulation environment, the ground terrain of the 3D scene
determines the Z-position (elevation), roll angle, and pitch angle of the vehicles.

In each Simulation 3D Vehicle with Ground Following block, the Type parameter corresponds to the
3D Display Type selected for that vehicle in the app. In addition, the Color parameter corresponds
to the vehicle color specified in the app. To maintain similar vehicle visualizations between the
Bird's-Eye Scope and the 3D simulation window, the specified type and color must match. To change
the color of a vehicle in the app, on the Actors tab, click the color patch to the right of the actor
name in the actor selection list. Choose the color that most closely matches the colors available in the
Color parameter of the Simulation 3D Vehicle with Ground Following block.

Inspect Sensor Configuration

The model includes two sensor blocks with default parameter settings. These blocks generate
detections from the 3D simulation environment.

• The Simulation 3D Probabilistic Radar sensor block generates object detections based on a
statistical model. This sensor is mounted to the front bumper of the ego vehicle.

• The Simulation 3D Lidar sensor block generates detections in the form of a point cloud. This
sensor is mounted to the center of the roof of the ego vehicle.

Although you can specify sensors in the Driving Scenario Designer app and export them to
Simulink, the exported blocks are not compatible with the 3D simulation environment. You must
specify 3D simulation sensors in the model directly.

Simulate and Visualize Scenario

During simulation, you can visualize the scenario in both the 3D simulation window and the Bird's-
Eye Scope.

 Visualize 3D Simulation Sensor Coverages and Detections

6-39

First, open the scope. On the Simulink toolstrip, under Review Results, click Bird's-Eye Scope.
Then, to find signals that the scope can display, click Find Signals.

To run the simulation, click Run in either the model or scope. When the simulation begins, it can take
a few seconds for the 3D simulation window to initialize, especially when you run it for the first time
in a Simulink session. When this window opens, it displays the scenario with high-fidelity graphics but
does not display detections or sensor coverages.

The Bird's-Eye Scope displays detections and sensor coverages by using a cuboid representation.
The radar coverage area and detections are in red. The lidar coverage area is in gray, and its point
cloud detections display as a parula colormap.

6 3D Simulation – User's Guide

6-40

The model runs the simulation at a pace of 0.5 seconds per wall-clock second. To adjust the pacing,
from the Simulink toolstrip, select Run > Simulation Pacing, and then move the slider to increase
or decrease the speed of the simulation.

Modify the Driving Scenario

When modifying your driving scenario, you might need to update the scenario in the Driving
Scenario Designer app, the Simulink model, or in both places, depending on what you change.

• Modify the road network — In the app, select a new prebuilt scene from the Simulation3D
folder. Do not modify these road networks or the roads will not match the roads in the selected 3D
scene. In the model, in the Simulation 3D Scene Configuration block, select the corresponding
scene in the Scene name parameter.

• Modify vehicle trajectories — In the app, modify the vehicle trajectories and resave the
scenario. In the model, you do not need to update anything to account for this change. The
Scenario Reader block automatically picks up these changes.

• Modify vehicle appearances — In the app, update the color and 3D Display Type parameter of
the vehicles. Also make sure that the 3D Display > Use 3D Simulation Actor Dimensions
option is selected. In the model, update the Color and Type parameters of the corresponding
Simulation 3D Vehicle with Ground Following blocks.

• Add a new vehicle — In the app, create a new vehicle and specify a trajectory, color, and 3D
display type. In the model, add a new Simulation 3D Vehicle with Ground Following block and
corresponding Cuboid To 3D Simulation block. Set up these blocks similar to how the existing non-
ego vehicles are set up. In the Cuboid To 3D Simulation block, set the ActorID of the new vehicle.

 Visualize 3D Simulation Sensor Coverages and Detections

6-41

• Set a new ego vehicle — In the app, on the Actors tab, select the vehicle that you want to set as
the ego vehicle and click Set As Ego Vehicle. In the model, in the Cuboid To 3D Simulation
blocks, update the ActorID used for conversion parameters to account for which vehicle is the
new ego vehicle. In the sensor blocks, set the Parent name parameters such that the sensors are
mounted to the new ego vehicle.

• Modify or add sensors — In the app, you do not need to make any changes. In the model, modify
or add sensor blocks. When adding sensor blocks, set the Parent name of all sensors to the ego
vehicle.

To visualize any updated scenario in the Bird's-Eye Scope, you must click Find Signals again. If you
modify a scenario or are interested in only visualizing sensor data, consider turning off the 3D
window during simulation. In the Simulation 3D Scene Configuration block, clear the Display 3D
simulation window parameter.

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Cuboid To 3D Simulation | Scenario Reader | Simulation 3D Scene Configuration | Simulation 3D
Vehicle with Ground Following | Vehicle To World

More About
• “Choose a Sensor for 3D Simulation” on page 6-16
• “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-55
• “Highway Lane Following”

6 3D Simulation – User's Guide

6-42

Customize 3D Scenes for Automated Driving
Automated Driving Toolbox comes installed with prebuilt 3D scenes in which to simulate and visualize
the performance of driving algorithms modeled in Simulink. These 3D scenes are visualized using the
Unreal Engine from Epic Games. By using the Unreal Editor and the Automated Driving Toolbox
Interface for Unreal Engine 4 Projects, you can customize these scenes. You can also use the Unreal
Editor and the support package to simulate within scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. You can also package your scenes into an executable file
so that you do not have to open the editor to simulate with these scenes.

To customize 3D scenes for automated driving, follow these steps:

1 “Install Support Package for Customizing Scenes” on page 6-44
2 “Customize Scenes Using Simulink and Unreal Editor” on page 6-47
3 “Package Custom Scenes into Executable” on page 6-52

See Also
Simulation 3D Scene Configuration

More About
• “3D Simulation for Automated Driving” on page 6-2

 Customize 3D Scenes for Automated Driving

6-43

Install Support Package for Customizing Scenes
To customize scenes in the Unreal Editor and use them in Simulink, you must install the Automated
Driving Toolbox Interface for Unreal Engine 4 Projects.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “3D Simulation Environment Requirements and Limitations”
on page 6-6. In particular, verify that you have Visual Studio 2017 or newer installed. This software is
required for using the Unreal Editor to customize scenes.

In addition, verify that your project is compatible with Unreal Engine, Version 4.23. If your project
was created with an older version of the Unreal Editor, upgrade your project to version 4.23.

Install Support Package
To install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package,
follow these steps:

1 On the MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer window, search for the Automated Driving Toolbox Interface for Unreal
Engine 4 Projects support package. Click Install.

Note You must have write permission for the installation folder.

Set Up Scene Customization Using Support Package
The Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package includes
these components:

• An Unreal Engine project file (AutoVrtlEnv.uproject) and its associated files. This project file
includes editable versions of the prebuilt 3D scenes that you can select from the Scene
description parameter of the Simulation 3D Scene Configuration block.

• A plugin file, MathWorkSimulation.uplugin. This plugin establishes the connection between
Simulink and the Unreal Editor and is required for co-simulation.

6 3D Simulation – User's Guide

6-44

To set up scene customization, you must copy this project and plugin onto your local machine.

Copy Project to Local Folder

Copy the AutoVrtlEnv project folder into a folder on your local machine.

1 Specify the path to the support package folder that contains the project. If you previously
downloaded the support package, specify only the latest download path, as shown here. Also
specify a local folder destination in which to copy the project. This code specifies a local folder of
C:\Local.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","shared","sim3dprojects","driving");
localFolder = "C:\Local";

2 Copy the AutoVrtlEnv project from the support package folder to the local destination folder.

projectFolderName = "AutoVrtlEnv";
projectSupportPackageFolder = fullfile(supportPackageFolder,projectFolderName);
projectLocalFolder = fullfile(localFolder,projectFolderName);
if ~exist(projectLocalFolder,"dir")
 copyfile(projectSupportPackageFolder,projectLocalFolder);
end

The AutoVrtlEnv.uproject file and all of its supporting files are now located in a folder
named AutoVrtlEnv within the specified local folder. For example: C:\Local\AutoVrtlEnv.

Copy Plugin to Unreal Editor

Copy the MathWorksSimulation plugin into the Plugins folder of your Unreal Engine installation.

1 Specify the local folder containing your Unreal Engine installation. This code shows the default
installation location for the editor on a Windows machine.

ueInstallFolder = "C:\Program Files\Epic Games\UE_4.23";
2 Copy the plugin from the support package into the Plugins folder.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","shared","sim3dprojects","driving");

mwPluginName = "MathWorksSimulation.uplugin";
mwPluginFolder = fullfile(supportPackageFolder,"PluginResources","UE423");
uePluginFolder = fullfile(ueInstallFolder,"Engine","Plugins");
uePluginDestination = fullfile(uePluginFolder,"Marketplace","MathWorks");

cd(uePluginFolder)
foundPlugins = dir("**/" + mwPluginName);

if ~isempty(foundPlugins)
 numPlugins = size(foundPlugins,1);
 msg2 = cell(1,numPlugins);
 pluginCell = struct2cell(foundPlugins);

 msg1 = "Plugin(s) already exist here:" + newline + newline;
 for n = 1:numPlugins
 msg2{n} = " " + pluginCell{2,n} + newline;

 Install Support Package for Customizing Scenes

6-45

 end
 msg3 = newline + "Please remove plugin folder(s) and try again.";
 msg = msg1 + msg2 + msg3;
 warning(msg);
else
 copyfile(mwPluginFolder, uePluginDestination);
 disp("Successfully copied MathWorksSimulation plugin to UE4 engine plugins!")
end

After you install and set up the support package, you can begin customizing scenes. See “Customize
Scenes Using Simulink and Unreal Editor” on page 6-47.

See Also

More About
• “3D Simulation for Automated Driving” on page 6-2
• “3D Simulation Environment Requirements and Limitations” on page 6-6

6 3D Simulation – User's Guide

6-46

Customize Scenes Using Simulink and Unreal Editor
After you install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support
package as described in “Install Support Package for Customizing Scenes” on page 6-44, you can
simulate in custom scenes simultaneously from both the Unreal Editor and Simulink. By using this co-
simulation framework, you can add vehicles and sensors to a Simulink model and then run this
simulation in your custom scene.

Open Unreal Editor from Simulink
If you open your Unreal project file directly in the Unreal Editor, Simulink is unable to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model.

1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block. For example, open a simple model that
simulates a vehicle driving on a straight highway. This model is used in the “Design of Lane
Marker Detector in 3D Simulation Environment” example.

open_system('straightRoadSim3D');

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
to Unreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrtlEnv project that comes installed with the
Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package.

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject

This sample path specifies a custom project.

 Customize Scenes Using Simulink and Unreal Editor

6-47

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

The first time that you open the Unreal Editor from Simulink, you might be asked to rebuild
UE4Editor DLL files or the AutoVrtlEnv module. Click Yes to rebuild these files or modules. The
editor also prompts you that new plugins are available. Click Manage Plugins and verify that the
MathWorks Interface plugin is installed. This plugin is the MathWorksSimulation.uplugin file
that you copied into your Unreal Editor installation in “Install Support Package for Customizing
Scenes” on page 6-44.

When the editor opens, you can ignore any warning messages about files with the name
'_BuiltData' that failed to load.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene.

Reparent Actor Blueprint

Note If you are using a scene from the AutoVtrlEnv project that comes installed with the
Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, skip this section.
However, if you create a new scene based off of one of the scenes in this project, then you must
complete this section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in Automated Driving Toolbox. The
level blueprint controls how objects interact with the 3D environment once they are placed in it.
Simulink returns an error at the start of simulation if the project is not reparented. You must reparent
each scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.
3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor

blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.
b In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed

window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat the steps under
“Copy Plugin to Unreal Editor” on page 6-45 and reopen the editor from Simulink.

c Close the editor and reopen it from Simulink.
4 Close the Level Blueprint window.

6 3D Simulation – User's Guide

6-48

Create or Modify Scenes in Unreal Editor
After you open the editor from Simulink, you can modify the scenes in your project or create new
scenes.

Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the AutoVrtlEnv.uproject file, in the Content Browser pane
below the editor window, navigate to the Content > Maps folder. Then, select the map that
corresponds to the scene you want to modify.

Unreal Editor Map Automated Driving Toolbox Scene
HwCurve Curved Road
DblLnChng Double Lane Change
BlackLake Open Surface
LargeParkingLot Large Parking Lot
SimpleLot Parking Lot
HwStrght Straight Road
USCityBlock US City Block
USHighway US Highway

Note The AutoVrtlEnv.uproject file does not include the Virtual Mcity scene.

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the AutoVtrlEnv project as a starting point for creating your own
scene. To save a version of the currently opened scene to your project, from the top-left menu of the
editor, select File > Save Current As. The new scene is saved to the same location as the existing
scene.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
driving-related assets. These assets are built as static meshes and begin with the prefix SM_. Search
for these objects in the Content Browser pane.

For example, add a stop sign to a scene in the AutoVrtlEnv project.

 Customize Scenes Using Simulink and Unreal Editor

6-49

1 In the Content Browser pane at the bottom of the editor, navigate to the Content folder.
2 In the search bar, search for SM_StopSign. Drag the stop sign from the Content Browser into

the editing window. You can then change the position of the stop sign in the editing window or on
the Details pane on the right, in the Transform section.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right.
Automated Driving Toolbox uses a right-hand Z-up coordinate system, where the Y-axis points to the
left. When positioning objects in a scene, keep this coordinate system difference in mind. In the two
coordinate systems, the positive and negative signs for the Y-axis and pitch angle values are reversed.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

To migrate assets from the AutoVrtlEnv project into your own project file, see Migrating Assets in
the Unreal Engine documentation.

To obtain semantic segmentation data from a scene, then you must apply stencil IDs to the objects
added to a scene. For more information, see “Apply Semantic Segmentation Labels to Custom Scenes”
on page 6-54.

Run Simulation
Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated vehicles and other objects in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

• If your Simulink model contains vehicles, these vehicles drive through the scene that is open
in the editor.

• If your Simulink model includes sensors, these sensors capture data from the scene that is
open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the vehicle name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the vehicle selected in the Scene view parameter.

6 3D Simulation – User's Guide

6-50

https://docs.unrealengine.com/en-US/index.html
https://docs.unrealengine.com/en-US/Engine/Content/Browser/UserGuide/Migrate/index.html

Key Camera View
1 Back left
2 Back
3 Back

right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front

right
0 Overhead

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

If you are co-simulating a custom project, to enable the numeric keypad, copy the
DefaultInput.ini file from the support package installation folder to your custom project folder.
For example, copy DefaultInput.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABRelease>\toolbox\shared\sim3dprojects\driving\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

After tuning your custom scene based on simulation results, you can then package the scene into an
executable. For more details, see “Package Custom Scenes into Executable” on page 6-52.

See Also
Simulation 3D Scene Configuration

More About
• “Apply Semantic Segmentation Labels to Custom Scenes” on page 6-54

 Customize Scenes Using Simulink and Unreal Editor

6-51

Package Custom Scenes into Executable
When you finish modifying a custom scene, you can package the project file containing this scene into
an executable. You can then configure your model to simulate from this executable by using the
Simulation 3D Scene Configuration block. Executable files can improve simulation performance and
do not require opening the Unreal Editor to simulate your scene. Instead, the scene runs by using the
Unreal Engine that comes installed with Automated Driving Toolbox.

Package Scene into Executable Using Unreal Editor
1 Open the project containing the scene in the Unreal Editor. You must open the project from a

Simulink model that is configured to co-simulate with the Unreal Editor. For more details on this
configuration, see “Customize Scenes Using Simulink and Unreal Editor” on page 6-47.

2 In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

3 In the left pane, in the Project section, click Packaging.
4 In the Packaging section, set or verify the options in the table. If you do not see all these

options, at the bottom of the Packaging section, click the Show Advanced expander

.

Packaging Option Enable or Disable
Use Pak File Enable
Cook everything in the project content
directory (ignore list of maps below)

Disable

Cook only maps (this only affects
cookall)

Enable

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

5 Specify the scene from the project that you want to package into an executable.

a In the List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default, the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

c Add or remove additional scenes as needed.
6 Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light

source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

7 (Optional) If you plan to semantic segmentation data from the scene by using a Simulation 3D
Camera block, enable rendering of the stencil IDs. In the left pane, in the Engine section, click
Rendering. Then, in the main window, in the Postprocessing section, set Custom Depth-
Stencil Pass to Enabled with Stencil. For more details on applying stencil IDs for semantic
segmentation, see “Apply Semantic Segmentation Labels to Custom Scenes” on page 6-54.

6 3D Simulation – User's Guide

6-52

8 Close the Project Settings window.
9 In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-

bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C:/Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C:/Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink
1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source

parameter to Unreal Executable.
2 Set the File name parameter to the name of your Unreal Editor executable file. You can either

browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe
3 Set the Scene parameter to the name of a scene from within the executable file. For example:

 /Game/Maps/myScene
4 Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the AutoVtrlEnv project, then the
scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\automotive\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also
Simulation 3D Scene Configuration

 Package Custom Scenes into Executable

6-53

Apply Semantic Segmentation Labels to Custom Scenes
The Simulation 3D Camera block provides an option to output semantic segmentation data from a
scene. If you add new scene elements, or assets (such as traffic signs or roads), to a custom scene,
then in the Unreal Editor, you must apply the correct ID to that element. This ID is known as a stencil
ID. Without the correct stencil ID applied, the Simulation 3D Camera block does not recognize the
scene element and does not display semantic segmentation data for it.

For example, this To Video Display window shows a stop sign that was added to a custom scene. The
Semantic Segmentation Display window does not display the stop sign, because the stop sign is
missing a stencil ID.

6 3D Simulation – User's Guide

6-54

To apply a stencil ID label to a scene element, follow these steps:

1 Open the Unreal Editor from a Simulink model that is configured to simulate in the 3D
environment. For more details, see “Customize Scenes Using Simulink and Unreal Editor” on
page 6-47.

2 In the editor window, select the scene element with the missing stencil ID.
3 On the Details pane on the right, in the Rendering section, select Render CustomDepth Pass.

 Apply Semantic Segmentation Labels to Custom Scenes

6-55

If you do not see this option, click the Show Advanced expander to show all
rendering options.

4 In the CustomDepth Stencil Value box, enter the stencil ID that corresponds to the asset. If
you are adding an asset to a scene from the Automated Driving Toolbox Interface for Unreal
Engine 4 Projects support package, then enter the stencil ID corresponding to that asset type, as
shown in the table. If you are adding assets other than the ones shown, then you can assign them
to unused IDs. If you do not assign a stencil ID to an asset, then the Unreal Editor assigns that
asset an ID of 0.

Note The Simulation 3D Camera block does not support the output of semantic segmentation
data for lane markings. Even if you assign a stencil ID to lane markings, the block ignores this
setting.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Not used
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used

6 3D Simulation – User's Guide

6-56

ID Type
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

For example, for a stop sign that is missing a stencil ID, enter 13.

Tip If you are adding stencil ID for scene elements of the same type, you can copy (Ctrl+C) and
paste (Ctrl+V) the element with the added stencil ID. The copied scene element includes the
stencil ID.

5 Visually verify that the correct stencil ID shows by using the custom stencil view. In the top-left

corner of the editor window, click and select Buffer Visualization > Custom Stencil.
The scene displays the stencil IDs specified for each scene element. For example, if you added
the correct stencil ID to a stop sign (13) then the editor window, the stop sign displays a stencil
ID value of 13.

 Apply Semantic Segmentation Labels to Custom Scenes

6-57

• If you did not set a stencil ID value for a scene element, then the element appears in black
and displays no stencil ID.

• If you did not select CustomDepth Stencil Value, then the scene element does not appear at
all in this view.

6 Turn off the custom stencil ID view. In the top-left corner of the editor window, click Buffer
Visualization and then select Lit.

7 If you have not already done so, set up your Simulink model to display semantic segmentation
data from a Simulation 3D Camera block. For an example setup, see “Visualize Depth and
Semantic Segmentation Data in 3D Environment” on page 6-30.

8 Run the simulation and verify that the Simulation 3D Camera block outputs the correct data. For
example, here is the Semantic Segmentation Display window with the correct stencil ID applied
to a stop sign.

6 3D Simulation – User's Guide

6-58

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration

More About
• “Visualize Depth and Semantic Segmentation Data in 3D Environment” on page 6-30
• “Customize Scenes Using Simulink and Unreal Editor” on page 6-47

 Apply Semantic Segmentation Labels to Custom Scenes

6-59

	Sensor Configuration and Coordinate System Transformations
	Coordinate Systems in Automated Driving Toolbox
	World Coordinate System
	Vehicle Coordinate System
	Sensor Coordinate System
	Spatial Coordinate System
	Pattern Coordinate System

	Calibrate a Monocular Camera
	Estimate Intrinsic Parameters
	Place Checkerboard for Extrinsic Parameter Estimation
	Estimate Extrinsic Parameters
	Configure Camera Using Intrinsic and Extrinsic Parameters

	Ground Truth Labeling and Verification
	Get Started with the Ground Truth Labeler
	Load Ground Truth Signals to Label
	Load Timestamps
	Open Ground Truth Labeler App
	Load Signals from Data Sources
	Configure Signal Display

	Label Ground Truth for Multiple Signals
	Create Label Definitions
	Label Video Using Automation
	Label Point Cloud Sequence Using Automation
	Label with Sublabels and Attributes Manually
	Label Scene Manually
	View Label Summary
	Save App Session

	Export Ground Truth Labels for Multiple Signals
	Sources vs. Signals in Ground Truth Labeling
	Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler
	Label Definitions
	Frame Navigation and Time Interval Settings
	Labeling Window
	Cuboid Drawing
	Polyline Drawing
	Polygon Drawing
	Zooming
	App Sessions

	Control Playback of Signal Frames for Labeling
	Signal Frames
	Master Signal
	Change Master Signal
	Display All Timestamps
	Specify Timestamps
	Frame Display and Automation

	Label Lidar Point Clouds for Object Detection
	Set Up Lidar Point Cloud Labeling
	Zoom, Pan, and Rotate Frame
	Hide Ground
	Label Cuboid
	Modify Cuboid Label
	Apply Cuboids to Multiple Frames
	Configure Display

	Create Class for Loading Custom Ground Truth Data Sources
	Custom Class Folder
	Class Definition
	Class Properties
	Method to Customize Load Panel
	Methods to Get Load Panel Data and Load Data Source
	Method to Read Frames
	Use Predefined Data Source Classes

	Tracking and Sensor Fusion
	Visualize Sensor Data and Tracks in Bird's-Eye Scope
	Open Model and Scope
	Find Signals
	Run Simulation
	Organize Signal Groups (Optional)
	Update Model and Rerun Simulation
	Save and Close Model

	Linear Kalman Filters
	State Equations
	Measurement Models
	Linear Kalman Filter Equations
	Filter Loop
	Constant Velocity Model
	Constant Acceleration Model

	Extended Kalman Filters
	State Update Model
	Measurement Model
	Extended Kalman Filter Loop
	Predefined Extended Kalman Filter Functions

	Planning, Mapping, and Control
	Display Data on OpenStreetMap Basemap
	Access HERE HD Live Map Data
	Step 1: Enter Credentials
	Step 2: Create Reader Configuration
	Step 3: Create Reader
	Step 4: Read and Visualize Data

	Enter HERE HD Live Map Credentials
	Create Configuration for HERE HD Live Map Reader
	Create Configuration for Specific Catalog
	Create Configuration for Specific Version
	Configure Reader

	Create HERE HD Live Map Reader
	Create Reader from Specified Driving Route
	Create Reader from Specified Map Tile IDs

	Read and Visualize Data Using HERE HD Live Map Reader
	Create Reader
	Read Map Layer Data
	Visualize Map Layer Data

	HERE HD Live Map Layers
	Road Centerline Model
	HD Lane Model
	HD Localization Model

	Rotations, Orientations, and Quaternions for Automated Driving
	Quaternion Format
	Quaternion Creation
	Quaternion Math
	Extract Quaternions from Transformation Matrix

	Control Vehicle Velocity
	Velocity Profile of Straight Path
	Velocity Profile of Path with Curve and Direction Change

	Cuboid Driving Scenario Simulation
	Build a Driving Scenario and Generate Synthetic Detections
	Create a New Driving Scenario
	Add a Road
	Add Lanes
	Add Vehicles
	Add a Pedestrian
	Add Sensors
	Generate Synthetic Detections
	Save Scenario

	Prebuilt Driving Scenarios in Driving Scenario Designer
	Choose a Prebuilt Scenario
	Modify Scenario
	Generate Synthetic Detections
	Save Scenario

	Euro NCAP Driving Scenarios in Driving Scenario Designer
	Choose a Euro NCAP Scenario
	Modify Scenario
	Generate Synthetic Detections
	Save Scenario

	Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer
	Choose 3D Simulation Scenario
	Modify Scenario
	Save Scenario
	Recreate Scenario in Simulink for 3D Environment

	Import OpenDRIVE Roads into Driving Scenario
	Import OpenDRIVE File
	Inspect Roads
	Add Actors and Sensors to Scenario
	Generate Synthetic Detections
	Save Scenario

	Import HERE HD Live Map Roads into Driving Scenario
	Set Up HERE HDLM Credentials
	Specify Geographic Coordinates
	Select Region Containing Roads
	Select Roads to Import
	Import Roads
	Compare Imported Roads Against Map Data
	Save Scenario

	Create Driving Scenario Variations Programmatically
	Generate Sensor Detection Blocks Using Driving Scenario Designer
	Test Open-Loop ADAS Algorithm Using Driving Scenario
	Test Closed-Loop ADAS Algorithm Using Driving Scenario

	3D Simulation – User's Guide
	3D Simulation for Automated Driving
	3D Simulation Blocks
	Algorithm Testing and Visualization

	3D Simulation Environment Requirements and Limitations
	Software Requirements
	Minimum Hardware Requirements
	Limitations

	How 3D Simulation for Automated Driving Works
	Communication with 3D Simulation Environment
	Block Execution Order

	Coordinate Systems for 3D Simulation in Automated Driving Toolbox
	World Coordinate System
	Vehicle Coordinate System

	Choose a Sensor for 3D Simulation
	Simulate a Simple Driving Scenario and Sensor in 3D Environment
	Visualize Depth and Semantic Segmentation Data in 3D Environment
	Visualize 3D Simulation Sensor Coverages and Detections
	Customize 3D Scenes for Automated Driving
	Install Support Package for Customizing Scenes
	Verify Software and Hardware Requirements
	Install Support Package
	Set Up Scene Customization Using Support Package

	Customize Scenes Using Simulink and Unreal Editor
	Open Unreal Editor from Simulink
	Reparent Actor Blueprint
	Create or Modify Scenes in Unreal Editor
	Run Simulation

	Package Custom Scenes into Executable
	Package Scene into Executable Using Unreal Editor
	Simulate Scene from Executable in Simulink

	Apply Semantic Segmentation Labels to Custom Scenes

